國立中央大學95學年度碩士班考試入學試題卷 # 2 頁 第 / 頁

所別:<u>光電科學研究所碩士班一般生</u>科目:<u>電磁學</u>學位在職生

(共八大題,每大題 12.5 分,總分 100 分)

- 1. An electric dipole $\mathbf{p}_1 = p_1 \mathbf{e}_z$ is located at the origin of the coordinate system. A second dipole $\mathbf{p}_2 = p_2 \mathbf{e}_z$ is located at (a) on the +z axis a distance r from the origin, or (b) on the +y axis a distance r from the origin. Show that the force between the two dipoles is attractive in case (a) and repulsive in case (b).
- 2. A conducting sphere with total charge Q is cut into half. What force must be used to hold the two halves together?
- 3. Two uniform infinite sheets of electric charge densities $+\sigma$ and $-\sigma$ intersect at right angles. Find the magnitude and direction of the electric field everywhere and sketch the lines of \mathbf{E} .
- 4. Two infinite current sheets, each of current density K_0 , are parallel and have their currents oppositely directed. Find the force per unit area on the sheets. Is the force repulsive or attractive?
- 5. A) When a light wave is incident from one medium to another one, and if I want to find the phases of the reflected and transmitted waves in terms of that of the incident wave, I should use which of the following equations:
 - a) Maxwell equations
 - b) The wave equation
 - c) Fresnel equations
 - d) Snell's law

Just choose the answer you think that is right and write it down on the answer sheet. You don't need to give reason.

- B) Snell's law results from
 - a) Coulomb's law
 - b) Faraday's law
 - c) Maxwell equations
 - d) The continuity of the tangential components of E and of H at the interface between 2 dielectric media.

Just tell me which one is the most appropriate answer. You don't have to give reason.

注:背面有試題

國立中央大學95學年度碩士班考試入學試題卷 #_____ 第 2 頁

所別:光電科學研究所碩士班 一般生 科目:電磁學 學位在職生

- C) For a wave guide made of infinitely conducting material, show that the tangential component of the E field at the inner surface of the guide is zero.
- 6. For a wave guide made of infinitely conducting material,
 - a) Must the normal components of the E field to the guide wall be zero at the inner surface?
 - b) Show that the ${\bf H}$ field must lie on the guide wall at the inner surface.
 - c) Show that the tangential component of **H** at the inner surface is perpendicular to the current density in the guide wall.
 - d) Show that the tangential component of **H** at the inner surface is equal to the current density in magnitude expressed in amperes/meter.
- 7. a) Show that the phase velocity of a plane wave propagating in z-direction such as $\mathbf{E}_0 \cos(\omega t kz)$ is ω/k . Explain your mathematical steps with words clearly.
 - b) Given that the relative permittivity ε_r and relative permeability μ_r of a material are 2 and 1.1, respectively. Find the wave length of a beam of light wave whose frequency is 10^{14} Hz propagating in it
- 8. a) Consider an optical plane wave incident normally upon a perfectly conducting material. Show that it is 100% reflected from it, and the phase of the incident wave and the reflected wave is reverse to each other.
 - b) Is there any charge induced on the surface of the perfectly conducting material?