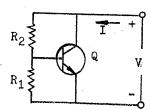
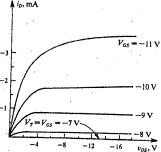
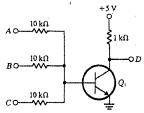

國立中央大學九十二學年度碩士班考試入學招生試題卷 共/頁 第/頁

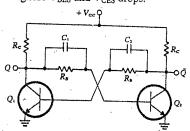
光電科學研究所 科目:


Consider an op-amp having $f_t = 1$ MHz, $R_{id} = 1$ Ma, and $R_{icm} = 100$ Ma. Find the input impedance of a noninverting amplifier with a nominal gain of 100. Assuming that


 $R_0 = 0$, $R_1 \ll R_{icm}$, $\frac{R_2}{R_{id}} \ll A$. f_t : unity-gain bandwidth.

(20%)


2. In the circuit as shown. Find the values of V and the incremental resistance for $\ensuremath{\mathtt{R}}_1 =$ $R_2 = 1K\Omega$. I = 10 mA. β = 100. and $V_{BE} = 0.7 V$. (20%)


3. Employing the MOSFET characteristic curves of Figure, show how saturated drain current values I_{DSS} can be obtained and from them other I_{DS} drain current values in saturation. (20%)

4. Prove that the circuit of the Figure is a NOR gate. Ignore the V_{BE} drop, leakage currents, and V_{CES} and $\beta{\ge}50,\,0V$ and 5V logic levels, and no external loading.

5. Design a collector-coupled flip-flop using transistors with $\beta \ge 20$. Assume $V_{CC} = +10V$ and obtain a minimum high-level output voltage of 9V. Ignore V_{BES} and V_{CES} drops. (20%)

