國立中央大學九十學年度碩士班研究生入學試題卷 所別: 光電科學研究所 不分組 科目: 電子學 共 1 頁 第 1 頁 - 1. Employing the MOSFET characteristic curves of Fig. P-1. Show how saturation drain current values I_{DSS} can be obtained and from then other I_{DS} drain current values in saturation of V_{GS}=-9V. (20 分) - 2. Verify that the exclusive OR logic function can be performed by the diode logic gate of Fig. P-2. (20 分) - 3. For the Schmitt trigger circuit shown in Fig. P-3. Assume i_B and V_{BE} are negligibly small. Please determine the transfer curve V_O V_S, V_I (20 分) - 4. Figure P-4 shows a transconductance amplifier with an infinite input resistance, a 10-K Ω output resistance, and a transconductance G_m =0.1A/V. A 1-M Ω resistor R_f is connected from the output of the amplifier back to its input. The amplifier is fed with a source V_s having a source resistance R_s . Find R_{in} , V_o/V_s , and R_{out} . (Hint: Miller's theorem is useful in finding R_{in} but not R_{out} .) (20 %) - 5. An op amp having a single-pole rolloff at 100Hz and a low-frequency gain of 10^5 is operated in a feedback loop with $\beta = 0.01$. What is the factor by which feetback shifts the pole? To what frequency? If β is changed to a value that results in a closed-loop gain of ± 1 , to what frequency does the pole shift? (20 \Rightarrow) i_{θ} , mA