國立中央大學九十學年度碩士班研究生入學試題卷

所別: 光電科學研究所 不分組 科目:

應用數學

共 ン頁 第_/_頁

(1) Consider the following mathematical expression

$$\int x^3 y + bx^2 \sin \frac{y}{z} \eta = c \quad (c \text{ is a constant}) \qquad (1)$$

It describes a surface in the 3-dimensional space. Why is that

3%

a) the gradient of the function is a vector?

24b) the gradient is normal to the surface?

Consider
$$f(x,y,t) = \sqrt{x^3y^2 + 6x^2} A \sin \frac{y}{t} T$$
 (2)

c) what is the directional derivative $\frac{d^2x}{dx^2}$ of this function at x = 1, y = 2, z = 3 and in the direction $\hat{L} + 2\hat{J} + 3\hat{R}$ 2%

d) what is the differential increment df of this function at x = 1, y = 2, z = 3, for $\Delta X = (0^{-3}, \Delta Y = 2 \times 10^{-3})$ and $\Delta Z = 3 \times 10^{-3}$? 2%

3% e) Can you calculate the same differential increment of in (d) for the surface described in Eq. 1?

(2) There are 2 physical vector quantities U and V that are related to each other by

$$V = \begin{pmatrix} 1 & -6 & 2 \\ -2 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
where $U = \hat{i} u_1 + \hat{j} u_2 + \hat{k} u_3$, $V = \hat{i} v_1 + \hat{j} v_2 + \hat{k} v_3$.

So in general V is not in the same direction as U.

9% a) Are there any particular directions along which U and V are parallel to each other. If the answer is "no", why? If "yes", find them.

b) Given a particular $U = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ is this U an eigenvector of the matrix in this 3%

(3) Prove that

By and c are constant

$$u(x,t) = \sum_{n=1}^{\infty} B_n \cos \frac{cn\pi}{\ell} t A \ln \frac{n\pi x}{\ell} - - (3)$$

is the formal solution of the following partial differential equation:

$$\frac{\partial^{2} u}{\partial x^{2}} - \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} = 0 \qquad - \qquad - \qquad - \qquad - \qquad - \qquad (4)$$

satisfying the following boundary and initial conditions:

$$u(0,t)=0 \qquad u(l,t)=0 \qquad \text{for all } t$$

$$u(x,0)=\frac{2Q}{l}x \qquad \text{when} \quad 0 < x < \frac{1}{2}x$$

$$=\frac{2Q}{l}(l-x) \qquad \text{when} \quad \frac{1}{2} < x < l$$

國立中央大學九十學年度碩士班研究生入學試題卷

所別: 光電科學研究所 不分組 科目: <u>應用数學</u> 共 > 質 第 <u>> 頁</u>

and
$$\frac{\partial u}{\partial t}|_{t=0} = 0$$

9%

b) Can you find the B_1 ? Find the B_1 , B_2 and B_3 explicitly.

/式34

c) Is the U(x,t) in expression 3 with the B_n 's given in b) a solution of 4 at every point in the range? Yes or No? . If "yes", why? If "no", why?

(4) Given
$$S_1 = (1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}) + (\frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8}) + \cdots$$

3%

a) Is S, a convergent series? Give reason.

S2 is a series obtained by regrouping series S1

a series obtained by regrouping series of
$$S_2 = \left(1 + \frac{1}{3} - \frac{1}{2}\right) + \left(\frac{1}{5} + \frac{1}{7} - \frac{1}{4}\right) + \cdots$$

$$= \sum_{m=1}^{\infty} \left(\frac{1}{4m-3} + \frac{1}{4m-1} - \frac{1}{2m}\right)$$
The Solve convergent series give reason.

3%

b) Is S2 a convergent series, give reason.

b) Is
$$S_2$$
 a convergent series, give reason.
c) Given $S_1' = \left(1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2}\right) + \left(\frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2} - \frac{1}{8^2}\right) + \cdots$
and $S_2' = \left(1 + \frac{1}{3^2} - \frac{1}{2^2}\right) + \left(\frac{1}{5^2} + \frac{1}{7^2} - \frac{1}{4^2}\right) + \cdots$

$$= \sum_{m=1}^{\infty} \left(\frac{1}{(4m-3)^2} + \frac{1}{(4m-1)^2} - \frac{1}{(2m)^2}\right)$$

It is known already that $S_1 \neq S_2$ what about S_1' and S_2' ; are they equal? (? 有答案,设有理由,错3,全倒机分数)

(5) (15%) 解初值問題 4y''+4y'+y=0, y(0)=-2, y'(0)=1

- (6) (15%) 求解 $y''+6y'+9y = e^{-3x}/(x^2+1)$
- (7) (20%) 用 Laplace transform 解 $y''-3y'+2y=6e^{-4}$, y(0)=3, y'(0)=3

