國立中央大學 112 學年度碩士班考試入學試題

所別: 光電類

共之頁 第/頁

科目: 工程數學

Choose the correct answer (50%): 單選題, 每題 5分(單選題請在答案卷上作答)

- (1) Consider a photon beam of intensity I_0 , if the beam contains only photons of a single wavelenth λ and is directed at an absorptive semiconductor of thickness L, we can assume that the degradation of the intensity -dI(x)/dx is proportional to I(x), where I(x) is the intensity remaining at x. For $I_0 = 10$ mW, $\lambda = 400$ nm and L = 0.46 μ m, what is the relationship between -dI(x)/dx and I(x) if 1 mW is absorbed by the semiconducor?
 - (A) $-d\mathbf{I}(\mathbf{x})/d\mathbf{x} = a^2 \mathbf{I}(\mathbf{x})$, with $a = 1 \times 10^4 \text{ cm}^{-1}$; (B) $-d\mathbf{I}(\mathbf{x})/d\mathbf{x} = a^3 \mathbf{I}(\mathbf{x})$, with $a = 1 \times 10^4 \text{ cm}^{-1}$;
 - (C) $-d\mathbf{I}(\mathbf{x})/d\mathbf{x} = a\mathbf{I}(\mathbf{x})$, with $a = 2\times10^4$ cm⁻¹; (D) $-d\mathbf{I}(\mathbf{x})/d\mathbf{x} = a^2\mathbf{I}(\mathbf{x})$, with $a = 2\times10^4$ cm⁻¹;
 - (E) $-d\mathbf{I}(\mathbf{x})/d\mathbf{x} = a^3 \mathbf{I}(\mathbf{x})$, with $a = 3 \times 10^4 \text{ cm}^{-1}$; (F) $-d\mathbf{I}(\mathbf{x})/d\mathbf{x} = a \mathbf{I}(\mathbf{x})$, with $a = 4 \times 10^4 \text{ cm}^{-1}$;
 - (G) -dI(x)/dx = a I(x), with $a = 5 \times 10^4 \text{ cm}^{-1}$.
- (2) If c is a constant and $x \frac{dy}{dx} = y + e^x y^3$, with $0 < x < \infty$, what is y(x)? (A) $(2x^{-2} cx^{-1}e^x + 2x^{-2}e^x)^{-0.5}$
 - (B) $(x^{-2}-2x^{-1}e^x+2x^{-2}e^c)^{-0.5}$ (C) $(cx^{-2}-2x^{-1}e^x+2x^{-2}e^x)^{-0.5}$ (D) $(cx^{-2}-3x^{-1}e^x+2x^{-2}e^x)^{-0.5}$
 - (E) $(3cx^{-2}-2x^{-1}e^x+2x^{-2}e^x)^{-0.5}$ (F) $(x^{-2}-2x^{-1}e^x+2x^{-2}e^x+c)^{-0.5}$ (G) Nove of the above
- (3) What is the solution of $\frac{dy}{dx} = \frac{2+\sin x}{3(y-1)^2}$ with y(0)=1? (A) $x = 1 + (2y \cos y + 1)^{1/3}$
 - (B) $y = 1 + (2x \cos x + 1)^{1/3}$ (C) $y = 1 + (2x \cos x + 2)^{1/3}$ (D) $y = 1 + (2x \cos x + 3)^{1/3}$
 - (E) $x = 1 + (2y \cos y + 2)^{1/3}$ (F) $x = 1 + (2y \cos y + 3)^{1/3}$ (G) None of the above
- (4) If $\frac{dR}{dt} = 2R$ and R = -1 when t = 0, what is R when t = 1? (A)7.389 (B) -5.389 (C) 8.389
 - (D) -3.389 (E) 6.389 (F) -2.389 (G) None of the above.
- (5) T is a radioactive material with the half-life of 1.4×10^{10} years. If a piece of mineral contains 2 grams of T, how many years must elapse before 1.9 grams of T reamin in the mineral? (A) 0.104×10^{10} (B) 0.204×10^{10} (C) 0.304×10^{10} (D) 0.404×10^{10} (E) 0.504×10^{10} (F) 0.604×10^{10} (G) 0.704×10^{10}
- (6) A bacterium is cultivated in a beaker of liquid. If P(t) is the population density of the bacterium at the tth hour and P(t) triples in 2 hours, how many hours will P(t) double? (A) 1.062 (B) 1.162
 (C) 1.262 (D) 1.362 (E) 1.4262 (F) 1.562 (G) 1.662
- (7) If y satisfies the equation $x^2 \frac{dy}{dx} = y^2 xy + x^2$, with y(1) = 2, what is y(2)? (A) 5.518
 - (B) 6.518 (C) 7.518 (D) 8.518 (E) 9.518 (F) 10.518 (G) 11.518
- (8) What is the solution of $(2x + 2y^2) + (4xy + 3y^2) \frac{dy}{dx} = 0$? (A) $x^2 + 2xy + y^3 = \text{constant}$
 - (B) $x^2 + 2xy^2 + y^3 = constant$ (C) $x^2 + 2xy^2 + y^2 = constant$ (D) $x + 2xy^2 + y^3 = constant$
 - (E) $x+2x^2y^2+y^3 = constant$ (F) $x^2+2xy^2+y = constant$ (G) $x+2xy^2+y = constant$

注意:背面有試題

國立中央大學 112 學年度碩士班考試入學試題

所別: <u>光電類</u>

共之頁 第 2頁

科目: 工程數學

(9) If $(2x + 1 + 2y^2) + (4xy + 3y^2)\frac{dy}{dx} = 0$ and y(0) = -1, what is x when y = 1? (A) 3 (B) -0.5 (C) 2 (D) -2 (E) 0 (F) 1 (G) 0.5

(10) If $2xy = (4y^2 + xy)\frac{dy}{dx}$, what is y(3)? (A) -3 (B) 2 (C) 1 (D) 0 (E) -2 (F) 3 (G) None of the above

Solve the following problems (50%): 計算題(無計算過程者不予計分)

(11) (10%) Consider the vector function $\vec{F}(x,y,z) = [x-y,y-z,z-x]$ and the surface S bounding the hemisphere $x^2 + y^2 + z^2 \le 9$, $z \ge 0$ together with the disk $x^2 + y^2 \le 9$ in the xy-plane. Evaluate $\iint_S \vec{F} \cdot \vec{n} dA$.

- (12) Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 3 & 1 \\ 3 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix}$.
- (a) (10%) An orthogonal matrix **X** would diagonalize **A** to a diagonal matrix **D**. Find **X** and **D**.
- (b) (3%) Find A^{-1} , the inverse of A.
- (c) (2%) Find an orthogonal matrix \mathbf{Y} that diagonalizes $\mathbf{A}^{\text{-1}}$ to a diagonal matrix \mathbf{E} .
- (13) (10%) Consider a single-loop RC-series circuit with $R = 10 \text{ k}\Omega$ and $C = 10 \mu\text{F}$. Determine the current i(t) with an impressed voltage v(t) = 5 V for 1 < t < 3 and zero otherwise. Assume zero initial current. Find the solution by using the Laplace transform.
- (14) Denote the Fourier transform of f(t) as $F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$.
- (a) (10%) Determine the Fourier transform of $f_1(t) = \cos(2t) \exp(-3|t|)$.
- (b) (5%) Find and sketch the Fourier transform of $f_2(t) = \delta(t + \frac{1}{2}) \delta(t \frac{1}{2})$, where $\delta(t)$ is the Dirac delta function.

注意:背面有試題