國立中央大學 110 學年度碩士班考試入學試題

所別: 光電類

共全頁 第上頁

科目: 電磁學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

※計算題需計算過程,無計算過程者不予計分

Part A

- 1. (a) Describe how the electric permittivity and magnetic permeability are defined? (5pts).
 - (b) And by what experiments can one measure them? (5pts).
- 2. Electret filters are key components in medical face masks that exhibit enhanced ability to capture airborne particulate matters (PM). Normally, electret filters are made by corona-charging or the so-called melt-blown technology to load charges onto nonwoven fabrics. Suppose here, a high energy electron beam with current I=0.5 μ A is used to bombard the polypropylene fabric (with relative permittivity ϵ_r =2.5) over an area A= 5×5 cm² for 1 sec. Assume that the all the electrons are uniformly trapped in a very thin layer.
 - (a) Describe the operational principle of such a filter for PM2.5 (i.e., a particulate matter of diameter of 2.5 μm). (5pts)
 - (b) What is the energy of a PM2.5 a distance h=1cm (h<<A) above the mask. (hint: you may treat the particle as an electric dipole with a dipole moment **p**). (5pts)
 - (c) What is the force exerted on the PM2.5 by the mask. (5pts).
 - (d) Is the design appropriate and reasonable? If not, give your reasons and solutions? (Hint: you may compare the obtained force with the gravity the particle "feels".) (5pts).
- 3. A long straight conducting wire has a circular cross-section of radius R and carries a current I. Inside the conductor, there is a cylindrical hole of radius a whose axis is parallel to the axis of the conducting wire and is located at a distance b from it. Calculated the magnetic field inside the hole. (15 pts).

Part B

4. (15%) The intrinsic impedance of an unknown material at 200 MHz is found to be approximately $\eta_c \approx 25.3 e^{j41^\circ}$ (Ω).

Assuming that the material is nonmagnetic,

- (a) (5%) determine the relative dielectric constant ϵ_r' ,
- (b) (5%) find out its (effective) conductivity at this frequency, and
- (c) (5%) obtain the loss tangent of this material. What's the physical meaning of the loss tangent?
- 5. (27%) A uniform plane wave in a nonmagnetic *simple* medium 1 (μ_0 , ϵ_1) is incident upon a nonmagnetic *simple* medium 2 (μ_0 , ϵ_2) of half-space as shown in Fig. 1, where μ_0 and ϵ denote the free-space permeability and the absolute permittivity, respectively. According to the experimental data there is no reflection at some incident angle. Assume a time dependence of $e^{j\omega t}$, answer the following questions:
 - (a) (5%) What do we mean by a simple medium?
 - (b) (3%) Given the free-space wavelength λ_0 , write down the incident wave vector k_i .

注意:背面有試題

國立中央大學 110 學年度碩士班考試入學試題

所別: 光電類

共之頁 第之頁

科目: 電磁學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- (c) (5%) If the incident magnetic field of constant amplitude H_{i0} points in the y-direction, determine the phasor form of the incident electric field E_i .
- (d) (9%) Assume the direction of the H field does not change upon reflection and transmission at the interface and the magnetic field amplitudes of the reflected and transmitted waves are denoted by H_{r0} and H_{t0} , respectively. Obtain the relation that the tangential components of the electric fields in media 1 and 2 must satisfy at x = 0.
- (e) (5%) Explain how the phase matching condition is obtained based on the result from (d).

Fig. 1

- 6. (13%) A load of $Z_L=32+j60~\Omega$ is to be matched to a main line of characteristic impedance $Z_0=50~\Omega$ using a circuit shown in Fig. 2.
 - (a) (8%) Determine the characteristic impedance of Z_{0Q} of this quarter-wave segment.
 - (b) (5%) Find out the shortest short-circuited stub length l_s required to match the load at interface BB'.

Fig. 2