國立中央大學 107 學年度碩士班考試入學試題

所別: 光電科學與工程學系 碩士班 不分組(一般生)

共2頁 第1頁

科目: 工程數學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 1) Given that $f(x) = e^{i(\sqrt{2}+2i)x}$
 - a) (5pt) Find the argument of this complex function at $x = \frac{\pi}{2\sqrt{2}}$
 - b) (5pt) Find the argument of $\frac{df(x)}{dx}$ at $x = \frac{\pi}{2\sqrt{2}}$
 - c) (5pt) Show that the difference of the argument of f(x) and that of
 - $\frac{df(x)}{dx}$ is the same at all points of x.

2) a) (6pt) Find the eigenvectors of the following matrix

$$\begin{pmatrix} 3.75 & -0.433 \\ -0.433 & 3.25 \end{pmatrix}$$

- b) (6pt) Draw a figure showing the eigenvectors you have found. Do they have any particular geometric relation between them?
- c) (5pt) Calculate the "Dot Product" of the 2 eigenvectors you have found in part-b.

参考用

國立中央大學 107 學年度碩士班考試入學試題

所別: 光電科學與工程學系 碩士班 不分組(一般生)

共多頁 第2頁

科目: 工程數學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

3) Given that the one-dimensional Heat flow equation

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{1}$$

where u stands for temperature, t and x as usual denote respectively the time and the position along the bar in the accompanied diagram; c is a constant. When the boundary and initial conditions for u are

$$0 l$$

$$u(0,t) = u(l,t) = 0$$

$$u(x,0) = f(x)$$

$$(2)$$

it is known that

$$u(x,t) = B_n \sin \frac{n\pi x}{l} e^{-\lambda_n^2 t} \tag{3}$$

where $\lambda_n = cn\pi/l$ is a particular solution for Eq.(1). Now suppose instead of the above boundary and initial conditions, we have

$$u(0,t) = u(l,t) = U_0 \ (U_0 \neq 0 \text{ is a constant})$$

 $u(x,0) = f(x) + U_0$ (4)

Show that

- a) (9pt) $\left(B_n \sin \frac{n\pi x}{l} e^{-\lambda_n^2 t} + \text{a particular constant}\right)$ is a particular solution of Eq.(1) satisfying the boundary and initial conditions (4).
- b) (9pt) What is the particular constant mentioned in part-a? (Show the detail, guessed answer is not accepted)

注意:背面有試題

國立中央大學 107 學年度碩士班考試入學試題

所別: 光電科學與工程學系 碩士班 不分組(一般生)

共ろ頁 第ろ頁

科目: 工程數學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

4) (10pt) Calculate det(A) and find A^{101} of the following matrix

$$A = \begin{pmatrix} 0 & -i & 0 & 0 & 0 \\ i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$

5) (10pt) A plane curve is described by the equation

$$29x^2 + 24xy + 36y^2 = 180$$

What is the shape of this curve? Draw a figure to show this curve.

6) Calculate the divergence of the following two vector fields:

(a) (5pt)
$$\mathbf{W} = xy \,\hat{i} + yz \,\hat{j} + zx \,\hat{k}$$
.

(c) (5pt)
$$\mathbf{Q} = \cos(x^2 + y^2) \nabla e^{x+y+z}$$
.

7) (10pt) Given that

$$h(x) = u\left(x + \frac{\pi}{2}\right) - u\left(x - \frac{\pi}{2}\right),$$

where $u(x-a) = \begin{cases} 1 & \text{if } x \ge a \\ 0 & \text{if } x < a \end{cases}$ is the Heaviside step function.

Find the Fourier transform of the function $f(x) = h(x)\cos 2x$.

8) Solve the following initial value problems. Here $\delta(t-1)$ is the Dirac delta function and u(t-3) is the Heaviside step function.

(a) (5pt)
$$y'' - 4y' + 3y = \delta(t-1)$$
, $y(0) = 1$, $y'(0) = 0$.

(b) (5pt)
$$y'' + y' - 2y = u(t-3)$$
, $y(0) = 0$, $y'(0) = 1$.

