國立中央大學 105 學年度碩士班考試入學試題

所別: 光電科學與工程學系 碩士班 不分組(一般生)

共之頁 第一頁

科目: 近代物理

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

Planck constant $h=6.6\times10^{-34}$ J-s.

- 1. What is the number density N/V for helium to occur Bose-Einstein condensation at room temperature (300 K)? (10%)
- 2. If N particles are put in a system with only two possible states, E_I =0, and E_2 = E_0 . The distribution function is f_i = $A*exp(-E_i/kT)$. Compute the average energy and heat capacity (10%).
- 3. If a particle with mass m is in the simple harmonic oscillator ground state, with classical turning points at $\pm A$. Compute the expectation value of the kinetic energy and total energy. (10%)
- 4. If a gamma ray with the wavelength of 1.76 pm is used for Compton scattering measurement, what is the maximum kinetic energy given to electron? (10%)
- 5. If a particle M has total energy $4mc^2$ and decays into two identical particles moving along the direction of M, each of mass m, find the velocities of the two decay particles in the lab frame. (10%)
- 6. (a) If the maximum energy transferred to a free stationary electron during Compton scattering can accelerate it to a relativistic mass of $\frac{5}{3}m_0$ (where m_0 is the electron rest mass), what are the wavelengths of the incident photon and the recoil electron? (6%)
 - (b) Calculate the group and phase velocities of the recoil electron. (6%)
 - (c) Give at least three interaction situations that the Compton scattering effect might not be obvious or detectable. (4%)
- 7. A lighthouse with a 800 W lamp emitting at yellow light with a peak wavelength of 590 nm is 10 km far away from you in a boat. Estimate the photon flux (photon number per second per unit area (cm²)) of the 590 nm light (occupying 20% of the total emission energy) entering your eyes, assuming negligible attenuation of the light along the way. (5%)

注:背面有試題

國立中央大學 105 學年度碩士班考試入學試題

所別: 光電科學與工程學系 碩士班 不分組(一般生)

共之頁 第2頁

科目: 近代物理

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 8. (a) Sketch and explain experimental setups for measuring the absorption and emission spectra of atomic hydrogen. (5%)
 - (b) Why the observed spectral lines are not perfectly sharp? Give at least three possible mechanisms responsible for the line broadening. (4%)
 - (c) Explain why the selection rule for allowed transitions in Hydrogen is $\Delta l = \pm 1$ (where l is the orbital angular momentum quantum number). Show this selection rule leads to the possible transitions for Δj is 0, ± 1 (where j is the total angular momentum quantum number). Write down all the possible transitions in H_{α} line (using "term symbol", i.e., $n^{S}L_{j}$ to represent the energy levels). (7%)
 - (d) Calculate the ratio of intensities of the spectral lines from P states to S state in H_{α} line. (4%)
 - (e) In x-ray spectra measurement, Henry Moseley found the relationship between the characteristic frequency f of (say, K_{α}) x-ray and the atomic number Z of the probed atom is $f \propto (Z-\delta)^2$, where $\delta \sim 1$, which exhibits a small discrepancy with what is predicted as $f \propto Z^2$. Please explain what has caused the discrepancy. (4%)
- 9. Design an experiment to observe and measure the phenomenon of the gravitational deflection of light via the sun. (5%)

注:背面有試題