國立中央大學103學年度碩士班考試入學試題卷

所別:<u>光電科學與工程學系碩士班 不分組(一般生)</u> 科目:<u>電子學</u> 共<u>之</u>頁 第<u>/</u>頁 本科考試可使用計算器,廠牌、功能不拘 *請在試卷答案卷(卡)內作答

Choose the correct answer (25%):

(1) In the circuit shown in the figure, what is the value of R if the diode voltage is $V_D = 0.6~V$ and the reverse-saturation current of the diode is $I_0 = 8.38 \times 10^{-14}~A$ and at room temperature (T = 300 K)?

(A) 1 k Ω (B) 5 k Ω (C) 2 k Ω (D) 10 k Ω (E) 3 k Ω

- (2) At T = 300 K, what is the built-in potential barrier of a Si pn junction with the doping concentration of $N_a = 2 \times 10^{16}$ cm⁻³ in the p-region and $N_d = 5 \times 10^{16}$ cm⁻³ in the n-region? (The intrinsic carrier concentration of Si is $n_i = 1.5 \times 10^{10}$ cm⁻³)
 (A) 0.757 V (B) 0.601 V (C) 0.898 V (D) 0.562 V (E) 0.452 V
- (3) The threshold voltage of an n-channel enhancement-mode MOSFET is 0.5 V. If the conduction parameter of the MOSFET is K_n = 1.4 mA/V², what is the drain current (i_D) when the transistor is biased in the saturation region with the gate-to-source voltage (V_{GS}) of 1.6 V?
 (A) 2.02 mA (B) 0.22 mA (C) 1.69 mA (D) 1.21 mA (E) 0.66 mA
- (4) If the MOSFET shown in the figure is with the threshold voltage of 1 V and the conduction parameter (K_n) of 0.1mA/V^2 , what is the value of R? (A) 20 k Ω (B) 10 k Ω (C) 50 k Ω (D) 30 k Ω (E) 40 k Ω

(5) Using the parameters indicated in the circuit, determine the V_{CE} of the bipolar transistor with the dc common-emitter current gain of 200.
 (A) 5.5 V (B) 4 V (C) 3.5 V (D) 6.5 V (E) 3 V

参考用

注:背面有試題

國立中央大學103學年度碩士班考試入學試題卷

所別:光電科學與工程學系碩士班 不分組(一般生) 本科考試可使用計算器,廠牌、功能不拘

> For the circuit shown in Fig. 1(a), the input and output voltages that are zero at t = 0 is driven by the input signal v_I shown in Fig. 1(b). The resistance and capacitance in the circuit are $R_1 = 5 \text{ K}\Omega$ and $C_2 =$ 0.2 μ F. Determine the maximum value (5%) and minimum value (5%) of output signal v_O . Sketch and label the resulting output waveform v_O versus time (5%).

- For the circuit shown in Fig. 2, assume transistor parameters of $V_{\rm TN}=0.5$ V, $V_{\rm TP}=-0.5$ V, $K_{\rm n}=0.2$ mA/V², $K_{\rm p}=0.1$ mA/V², $\lambda_{\rm n}=\lambda_{\rm p}=0.015$ V⁻¹. Assume $V_{\rm DD}=5$ V and $I_{\rm Bias}=2$ mA, (a) Sketch the load line for transistor M_3 (5%).

 - (b) Sketch the current-voltage characteristic for transistor M_2 (5%).
 - (c) Determine the small-signal voltage gain $A_v = v_O/v_I$ (5%).

For the circuit shown in Fig. 3, derive the expressions for the voltage transfer function $T(s) = V_o(s)/V_i(s)$ (5%), determine the cutoff frequency f_{3dB} (5%), and sketch Bode plots of magnitude (5%) and phase (5%) for the circuit. .

國立中央大學103學年度碩士班考試入學試題卷

所別:<u>光電科學與工程學系碩士班不分組(一般生)</u>科目:<u>電子學</u>共<u>></u>頁第<u>></u>頁 本科考試可使用計算器,廠牌、功能不拘 *請在試卷答案卷(卡)內作答

4. Assuming the dc current gain of the transistor shown in the circuit is β = 99, determine the values of R_E and R_C with the indicated parameters. (10 %)

5. Draw the Bode plot of the circuit with the indicated parameters. In the Bode plot, label the corner frequency and the maximum magnitude in dB. (15 %)

