國立中央大學八十四學年度碩士班研究生入學試題卷

所別:統計研究所 甲組 科目: 數理統計 共 / 頁 第 / 頁

- 1. Let X_1, X_2, \dots, X_n be a random sample from a population with p.d.f. $f(x|\theta) = \theta x^{\theta-1}, 0 < x < 1$ and $\theta > 0$.
 - (a) Find the sufficient statistic of θ . (5%)
 - (b) Find the method of moment estimator of θ . Is the estimator sufficient? Why? (8%)
 - (c) Find the maximum likelihood estimator (MLE) of θ . Is the MLE sufficient? Why?
 - (d) Find the MLE of the mean of the distribution. (5%)
- 2. Let X_1, X_2, \dots, X_n be a random sample from a population with p.d.f. $f(x|\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, $x \ge 0$ and $\theta > 0$.
 - (a) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ . (8%)
 - (b) Findsthe UMVUE of $g(\theta) = \int_0^t [1 F(x|\theta)] dx = \int_0^t e^{-\frac{t}{\theta}} dx = \theta (1 e^{-\frac{t}{\theta}})$ for t > 0. (12%)
- 3. Let X_1, X_2, \dots, X_n be a random sample from the population with pmf $f(x|\theta) = \frac{e^{-\theta gx}}{x!}$, $x = 0, 1, 2, \dots$ and $\theta > 0$.
 - (a) Find the MLE $\hat{\theta}$ of θ . (5%)
 - (b) Find an approximate 95% confidence interval (C.I.) for θ by using the asymptotic distribution of $\hat{\theta}$. (8%)
 - (c) Find an approximate 95% C.I. for $\frac{1}{g}$. (5%)
- 4. Let θ have 3 possible values θ_1 , θ_2 and θ_3 , and the probability distributions corresponding to different values of θ are given below.

i	0	1	2	
$rac{p(i heta_1)}{p(i heta_2)}$	0.05	0.05	0.10	0.80
$p(i \theta_2)$	0.05	0.80	0.15	0
$p(i \theta_3)$	0.90	0.08	0.02	0

A single random variable X is observed.

- (a) Find the MLE of θ . (5%)
- (b) Find the likelihood-ratio test for testing $H_0: \theta = \theta_1$ v.s. $H_1: \theta \in \{\theta_2, \theta_3\}, \ \alpha = 0.10.$ (8%)
- (c) Is there a uniformly most powerful test for testing $H_0: \theta = \theta_1$ v.s. $H_1: \theta \in \{\theta_2, \theta_3\}, \ \alpha = 0.10$? Justify your answer. (5%)
- 5. Let X_1 and X_2 be a random sample from a population with the uniform $(\theta, \theta + 1)$ distribution. For testing $H_0: \theta = 0$ v.s. $H_1: \theta > 0$, we have two competing tests:
 - (i) $\phi_1(X_1)$: Reject H_0 if $X_1 > 0.95$
 - (ii) $\phi_2(X_1, X_2)$: Reject H_0 if $X_1 + X_2 > c$
 - (a) Find the value of c so that ϕ_2 has the same size as ϕ_1 . (10%)
 - (b) Is ϕ_2 a more powerful test than ϕ_1 ? Justify your answer. (8%)