國立中央大學 107 學年度碩士班考試入學試題

所別: 統計研究所 碩士班 不分組(一般生)

共1頁 第1頁

統計研究所 碩士班 不分組(在職生)

科目: 數理統計

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 1. Let X_1, X_2, \ldots, X_n be independent and identically distributed exponential random variables with mean $\theta > 0$.
 - (a) (10 %) Find an unbiased estimator of θ based on $g(X_1, \ldots, X_n) = \sqrt[n]{X_1 X_2 \cdots X_n}$, the sample geometric mean.
 - (b) (10 %) Is the unbiased estimator derived in (a) better than the sample (arithmetic) mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$? Give your reason.
- 2. (10%) Let X_1, \ldots, X_n be a random sample from the normal distribution with mean μ and variance one. Let $p(x_1, \ldots, x_n)$ be the p-value in testing $H_0: \mu = 0$ versus $H_1: \mu = 1$, where x_i is the observed value of X_i , $i = 1, \ldots, n$. Find the distribution of $T = p(X_1, \ldots, X_n)$ when H_0 is true.
- 3. Let X and Y be two random variables.
 - (a) (5 %) Prove or Disprove: If X and Y are independent, then X and Y are uncorrelated.
 - (b) (5 %) Prove or Disprove: If X and Y are uncorrelated, then X and Y are independent.
- 4. (10 %) Suppose that $X_1, X_2, \ldots, X_{n_1}, Y_1, Y_2, \ldots, Y_{n_2}$, and $Z_1, Z_2, \ldots, Z_{n_3}$ are independent random samples from normal distributions with respective unknown means μ_1, μ_2 and μ_3 and common unknown variance σ^2 . Derive the uniformly most powerful test for testing $H_0: \mu_1 = \mu_2$ against $H_1: \mu_1 < \mu_2$ at level α .
- 5. (10 %) Let Z be a random variable whose reciprocal, 1/Z, has gamma distribution with shape parameter 1/2 and scale parameter 2. Given Z = z, X has normal distribution with mean θ and variance $z\sigma^2$. What is the distribution of X? Show your work.
- 6. (10 %) Let $x_1 = -1$, $x_2 = 0$ and $x_3 = 1$ chosen from a certain distribution and let Y_1, Y_2 and Y_3 be randomly selected (with replacement) from $\{x_1, x_2, x_3\}$. Find the variance of the maximum of Y_1, Y_2, Y_3 .
- 7. Let Y_1, Y_2, \ldots, Y_n be independent Bernoulli random variables with success probability $p \in [0, 1]$. Let $W = \sum_{i=1}^{n} Y_i$, and

$$T = \begin{cases} 1, & \text{if } Y_1 = 1 \text{ and } Y_2 = 0 \\ 0, & \text{otherwsie.} \end{cases}$$

- (a) (10 %) Find E(T|W=w), the conditional expectation of T given W=w.
- (b) (10 %) Is E(T|W) unbiased of p(1-p)? What can you conclude about it?
- 8. (10 %) Let Y_1, Y_2, \ldots, Y_5 be a random sample with probability density function

$$f(y) = (3y^2/\theta) e^{-y^3/\theta}, y > 0,$$

and zero otherwise. Construct an exact $(1-\alpha)100\%$ confidence interval for θ .

