科目:線性代數 校系所組:中大數學系甲組 交大應用數學系甲組、乙組 清大數學系純粹數學組、應用數學組

LINEAR ALGEBRA 2007

1. (10 %) Find all points (a,b,c) in \mathbb{R}^3 for which the system

$$\begin{cases} 2x + 4y + 6z = a \\ 4x + 5y + 6z = b \\ 7x + 8y + 9z = c \end{cases}$$

has at least one solution.

2. (10 %) Let A,B be $n\times n$ matrices over $\mathbb R$. Prove or disprove the following statements.

(1) The trace of AB - BA is always zero.

- (2) If AB = -BA, then at least one of A, B is not invertible.
- 3. (15 %) Let $A := \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 6 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ and I be the 6×6 identity matrix.

Fill the following blanks:

(1) The eigenvalues of A are _____

(2) The determinant of I + A is _____

4. (20%) Let V be a finite-dimensional vector space over a field F, and let V^* denote the dual space of V i.e., V^* is the space of linear functions $V \to F$.

(1) Show that V^* , as a vector space, is isomorphic to V.

- (2) For $v \in V$, define $\phi_v \colon V^* \to F$ by $\phi_v(f) := f(v)$ for $f \in V^*$. Show that the map $\phi \colon V \to (V^*)^*$ define by $v \mapsto \phi_v$ is an isomorphism of vector spaces.
- 5. (10 %) Let V be a finite-dimensional inner product space over $\mathbb R$ with the inner product $\langle , \rangle \colon V \times V \to \mathbb R$. If W is a subspace of V, we define

$$W^{\perp} := \{ v \in V \mid \langle w, v \rangle = 0 \text{ for all } w \in W \}.$$

Suppose W_1, W_2 are two subspaces of V. Show that

$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}.$$

6. (20 %) For all $x \in \mathbb{R}^n$, we define the norm of x by $||x|| = \sqrt{\langle x, x \rangle}$ where \langle , \rangle is the standard inner product on \mathbb{R}^n .

Let $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

- (1) Find a vector p in the column space of A (the subspace of \mathbb{R}^3 spanned by the column vectors of A) such that $||p-b|| \le ||A \cdot x b||$ for all $x \in \mathbb{R}^4$
- (2) Find a vector x_0 in the row space of A (the subspace of \mathbb{R}^4 spanned by the row vectors of A) such that $A \cdot x_0 = p$.
- 7. (15 %) Determine whether $A = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 6 & -15 \\ 1 & 1 & -5 \\ 1 & 2 & -6 \end{pmatrix}$ are similar over $\mathbb C$ or not? Justify your answer.