國立中央大學95學年度碩士班考試入學試題卷 #_/_頁 第_/_頁

所別:<u>數學系碩士班 甲組(一般生)</u>科目:<u>線性代數</u> 學位在職生)

(7 problems in 1 page)

<u>Problem 1.</u> Let A be a complex $n \times n$ matrix. Let A' be the *conjugate transpose* of A.

- (a) (5%) Suppose that A is self-adjoint (that is, A' = A). Prove that every eigenvalue of A is real.
- (b) (5%) Suppose that A is *unitary* (that is, $A^*A = AA^* = I$). Prove that every eigenvalue λ of A has $\lambda \overline{\lambda} = 1$

<u>Problem 2.</u> (15%) Let A be a real 2×2 symmetric matrix. Prove that there exists a 2×2 real orthogonal matrix Q (that is, $Q^tQ = QQ^t = I$) such that

$$Q'AQ = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
, where λ_1 and λ_2 are eigenvalues of A .

Problem 3. The linear transformation $T: V \to V$ from a vector space V to itself satisfies $T^2 = T$ (that is a *projection*). Let I and O denote the identity and zero transformations on V. For each of the following give either a proof or a counterexample:

- (a) (5%) If λ is an eigenvalue of T then $\lambda \in \{0,1\}$.
- (b) (5%) T=I or T=O.

<u>Problem 4.</u> Let W_1 and W_2 be subspaces of the finite dimensional vector space V over the field F. Prove that

- (a) (5%) $W_1 + W_2 = \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$ and $W_1 \cap W_2$ are subspaces of V.
- (b) (10%) dim (W_1) +dim (W_2) =dim $(W_1 + W_2)$ +dim $(W_1 \cap W_2)$.

<u>Problem 5.</u> (15%) Let V be a finite-dimensional vector space over the field F and let T be a diagonalizable linear transformation from V to itself. Let c_1, c_2, \dots, c_k be all the distinct eigenvalues of T. Prove that the minimal polynomial for T is the polynomial

$$p(x) = (x - c_1)(x - c_2) \cdots (x - c_k).$$

<u>Problem 6.</u> (10%) Prove that every matrix A such that $A^2 = A$ is diagonalizable.

Problem 7. Let
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 6 & -4 & -4 \\ -6 & 6 & 6 \end{pmatrix}$$
 and $v = A^{2006} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

- (a) (15%) Find the eigenvalues and eigenvectors for the matrix A. Show your work.
- (b) (10%) Calculate the vector v.