國立中央大學九十三學年度碩士班研究生入學試題卷 共一頁 第一頁

所別: 數學系碩士班 不分組科目: 抽象代數

- \diamond Let \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} denote the ring of integers, the field of rational numbers, the field of real numbers and the field of complex numbers respectively.
- 1. (15%) Let G be an abelian group which contains two finite cyclic subgroups H and K of order s and t respectively. Show that G contains a cyclic subgroup of order the least common multiple of s and t. (Hint: you can deal with the case that s and t are relatively prime first.)
- 2. (15 %)
 - (a) Let H be a normal subgroup of G of order 2. Show that H is in the center of G.
 - (b) Assume that G is a finite group and p is the smallest prime dividing |G|. Let H be a normal subgroup of order p in G. Show that H is in the center of G. (Hint: you can consider the conjugation action of G on the set $H \setminus \{e\}$ where e is the identity of G.)
- 3. (10 %) How many elements of order 17 are contained in a group of order 255?
- 4. (10 %) Show that if D is a UFD, then a finite product of primitive polynomials in D[x] is again primitive.
- 5. (20 %) Prove or disprove the following.
 - (a) The polynomial ring $\mathbb{R}[x,y]$ in two variables is a Euclidean domain.
 - (b) The polynomial ring $\mathbb{R}[x]$ in one variable is a PID.
- 6. (10 %) Show that every finite extension field of \mathbb{R} is either \mathbb{R} itself or is isomorphic to \mathbb{C} .
- 7. (20 %) Let K be the splitting field of $x^5 1$ over \mathbb{Q} .
 - (a) Describe the Galois group $Gal(K/\mathbb{Q})$.
 - (b) Determine all intermediate fields between K and \mathbb{Q} .

