| 國立中  | 央大學九十二學年度 | 碩士班考試 | 入學招生計寫出 | 41. 7        |    |
|------|-----------|-------|---------|--------------|----|
| 系所別: |           | •     | 加工机规范   | 共 <u>之</u> 頁 | 第頁 |
|      | 数學系       | 科目:   | 抽象代數    |              |    |

## 以下各題,只給答案,沒有說明,不給分

In the following, the symbols  $\mathbb Q$  and  $\mathbb C$  denote the fields of rational numbers and complex numbers as usual.

- 1. Determine whether or not the following statements is correct. Explain your answers.
  - (a) (4分) For any given positive integer n there exists a finite group of order n.
  - (b) (6分) For any given positive integer n there are only finitely many non-isomorphic groups of order n.
- 2. Let G be a non-Abelian (non-commutative) group and let A be a cyclic group. Assume that G has an action \* on A which satisfies (1)  $(\sigma\tau)*$   $a = \sigma*(\tau*a)$  for all  $\sigma, \tau \in G$  and all  $a \in A$ ; and (2)  $\sigma*(ab) = (\sigma*a)(\sigma*b)$  for  $\sigma \in G$  and  $a, b \in A$ .
  - (a) (8分) Show that the action \* induces a group homomorphism from G to  $\operatorname{Aut}(A)$  where  $\operatorname{Aut}(A)$  is the automorphism group of A.
  - (b) (4分) Show that there exist a non-trivial normal subgroup H of G of finite index (that is,  $\{e\} \neq H \triangleleft G$  and [G:H] is finite) so that  $\sigma * a = a$  for all  $\sigma \in H$  and all  $a \in A$ .
  - (c) (4  $\Re$ ) Suppose that A is an infinite cyclic group. Show that the index [G:H] of H in G is either one or two.
- 3. Let p be a prime number and let  $S_p$  be the symmetric group on p symbol
  - (a) (10 分 ) Determine the number of p-Sylow subgroups of  $S_p$  ( Hipp first show that  $S_p$  has (p-1)! elements of order p).
  - (b) (8分) What are the numbers of p-Sylow subgroups of  $S_{p+i}$  for any i such that  $1 \le i \le p-1$ ? You need to explain your answer.
- 4. Let R be a finite ring.
  - (a) (7分) Can R be an integral domain if R has order |R|=36? Why?
  - (b) (7分) What should be a necessary condition for the order of R so that R can be an integral domain? Explain your answer.
- 5. Let F be a field. Let  $f_1(x), f_2(x), \ldots, f_n(x) \in F[x]$  be polynomials which are not all zero. The G.C.D. of  $f_1(x), f_2(x), \ldots, f_n(x)$  is defined to be the monic polynomial of



## 國立中央大學九十二學年度碩士班考試入學招生試題卷 共2頁第2頁

系所別: 數學系 科目: 抽象代數

maximal degree among common divisors of  $f_1(x), f_2(x), \ldots, f_n(x)$ . Denote the G.C.D. by  $gcd(f_1(x), f_2(x), \ldots, f_n(x))$ . Prove

$$\gcd(f_1(x), f_2(x), \dots, f_n(x)) = \sum_{i=1}^n a_i(x) f_i(x)$$
 for some  $a_i(x) \in F[x], i = 1, \dots, n$ 

by completing the following steps.

- (a) (12 %) Show that F[x] is a principal ideal domain.
- (b) (8%) Let  $\mathcal{A}$  be the ideal generated by  $f_1(x), f_2(x), \ldots, f_n(x)$ . Show that  $\mathcal{A}$  is also generated by  $\gcd(f_1(x), f_2(x), \ldots, f_n(x))$  and conclude that

$$\gcd(f_1(x), f_2(x), \dots, f_n(x)) = \sum_{i=1}^n a_i(x) f_i(x).$$

- 6. (10%) Let a, b be relatively prime non-zero integers such that at least one of a, b is not  $\pm 1$ . Assume that both a and b are square free integers. Is it true that the polynomial  $ax^m b$  is irreducible in  $\mathbb{Q}[x]$  for every positive integer m? Explain your answer. Note. An integer n is called square free if it has that property that for prime p with  $p \mid n$  then  $p^2 \nmid n$ .
- 7. (12%) Let P(x) be an irreducible polynomial in  $\mathbb{Q}[x]$ . Let  $r \in \mathbb{C}$  be a root of P(x).

$$\alpha = \frac{a_n r^n + \dots + a_1 r + a_0}{b_m r^m + \dots + b_1 r + b_0} \text{ where } a_i, b_j \in \mathbb{Q} \text{ and } b_m r^m + \dots + b_1 r + b_0 \neq 0.$$

Prove or disprove that there exists a polynomial  $f_{\alpha}(x) \in \mathbb{Q}[x]$  such that  $\alpha = f_{\alpha}(r)$ .

