請作題 1 - 5, 及選作題 6, 7, 8 中任二題.

- (20 points)
- (a) Is the function $f(z) = \begin{cases} \frac{xy(x+iy)}{x^2+v^2} & z \neq 0 \\ 0 & z = 0 \end{cases}$ differentiable at 0? Justify your answer.
- (b) Show that $f(z) = x^2 + iy^2$ is differentiable at all points on the line y = x, but it is nowhere analytic.
- Show that the series $\sum_{k=1}^{\infty} 1/(k^2+z)$ converges and defines an analytic 2. function on the right half-plane Rez > 0. (10 points)
- State Liouville's Theorem, the Maximum-Modulus Theorem, the Open Map-3. ping Theorem, Schwarz' Lemma, and Morera's Theorem. (25 points)
- Let z_0 be an isolated singularity of f. Prove 4.
 - (a) z_0 is a removable singularity if and only if $\lim_{z\to z_0} (z-z_0)f(z) = 0$.
- (b) z_0 is a pole of order $k \ge 1$ if and only if $\lim_{z \to z_0} (z z_0)^k f(z) \ne 0$ and $\lim_{z \to z_0} (z - z_0)^{k+1} f(z) = 0.$ (15 points)
- Evaluate the integral $\int_0^\infty \frac{\cos x}{1+x^2} dx$. (10 points) 5.
- Show that if f is analytic in a region D and if |f| is constant there, then f 6. (10 points) is constant.
- If an entire function f satisfies $|f(z)| \le A|z|^c$ for some positive constants A 7. and c and for all sufficiently large $z \in \mathbb{C}$, then f is a polynomial of degree at most n = [c]. Prove it by showing that all the coefficients C_k , k > n, in the (10 points) power series expansion of f are 0.
- Show that $\int_{\Gamma_R} e^{iz^2} dz \to 0$ as $R \to \infty$ where Γ_R is the circular segment: 8. $z = Re^{i\theta}, 0 \le \theta \le \pi/4.$ (10 points)