國立中央大學八十八學年度碩士班研究生入學試題卷

所別: <u>數學研究所</u>不分組 科目: <u>高等微積分</u> 共 / 頁 第 / 頁

- (17%) 1. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function and $A \subseteq \mathbb{R}^n$ be bounded. Prove or disprove that f(A) is bounded in \mathbb{R}^m .
- (77) 2. Prove or disprove that any linear map $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ is continuous.
- (173) 3. Each $f_n : \mathbb{R} \to \mathbb{R}$ is uniformly continuous on \mathbb{R} , and $\{f_n\}$ converges uniformly to f on \mathbb{R} . Prove or disprove that f is uniformly continuous on \mathbb{R} .
- (/7 $\hat{\pi}$) 4 Test the convergence of the series $\sum_{k=1}^{\infty} \frac{\log(k+1) \log k}{\tan^{-1}(2/k)}$, and explain your reason.
- (175) 5 Let $u(x,y) = \frac{x^4 + y^4}{x}$, $v(x,y) = \sin x + \cos y$. Show that the map $(x,y) \mapsto (u,v)$ is locally invertible at $(\frac{\pi}{2}, \frac{\pi}{2})$ and compute $\frac{\partial x}{\partial u}$ at $(x,y) = (\frac{\pi}{2}, \frac{\pi}{2})$.
- (15%) 6 Let S denote the upper half surface of ellipsoid $2x^2 + 2y^2 + z^2 = 1$, n denote its outward unit normal vector, and $F(x, y, z) = (9x, 3x + 2x^3 + 6xy^2, 3z)$. Evaluate the surface integral $\iint_{S} \langle \operatorname{curl} F, n \rangle dA,$

where $\langle \cdot, \cdot \rangle$ means the inner product. (此題可直接用定義計算,也可以用 Stokes 定理求得。)