國立中央大學八十六學年度碩士班研究生入學試題卷

所別: 數學研究所 不分組 科目:

統計

共2頁第/頁

SHOW YOUR WORK & GOOD LUCK!

- Use Table 1 & Table 2 if necessary
- 1. (10%) Let Y_1, Y_2, \ldots, Y_6 be a random sample from a normal population with a mean μ and a variance of σ^2 . Let $\bar{Y} = \frac{1}{5} \sum_{i=1}^5 Y_i$ and let $U = \sum_{i=1}^5 (Y_i \bar{Y})^2$. What is the distribution of $\frac{2Y_6 2\mu}{\sqrt{U}}$? Why?
- 2. (20%) If Y_1, Y_2, \ldots, Y_n denotes a random sample from an exponential distribution with a mean of θ .
 - (a). (14%) Find 2 sufficient statistics for θ. Justify your answers.
 - (b). (6%) Which sufficient statistics in (a) is better in terms of sufficiency? State your reason.
- 3. (15%) An urn contains θ white balls and $N \sim \theta$ black balls. A sample of n balls is to be selected without replacement. Let Y denote the number of white balls in the sample. Find the method of moments estimator of θ .
- 4. (20%) Suppose Y_1, Y_2, \ldots, Y_n denotes a random sample from the Weibull density function, given by

$$f(y) = \begin{cases} \frac{2y}{\theta} e^{-\frac{y^2}{\theta}}, & y > 0\\ 0, & \text{otherwise} \end{cases}$$

- (a). (10%) Find the minimal sufficient statistics for θ . Justify your answer.
- (b). (10%) Find a MVUE for θ . That is to find a minimum variance unbiased estimator for θ . Justify your answer.
- 5. (15%) Two methods for teaching reading were applied to two randomly selected groups of elementary schoolchildren and compared on the basis of a reading comprehension test given at the end of the learning period. The sample means ȳ and sample variances s² computed from the test scores are shown in the accompanying table. Find a 90% two-sided confidence interval for (μ₁ μ₂). Provided that the scores are normally distributed with mean μ₁, μ₂ and the same variance. Note that if Y₁,..., Y_n is a random sample then sample mean Ȳ = 1/n Σⁿ_{i=1} Y_i and sample variance S² = 1/n-1 Σⁿ_{i=1} (Y Ȳ)².

Statistics	Method 1	Method 2
No. Children in group	8	9
$ar{y}$	63	67
s ²	50	72

- 6. (20%) Let $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ for $i = 1, \ldots, n$ be n random variables. Let $S_{xY} = \sum_{i=1}^n (x_i \bar{x})(Y_i \bar{Y})$ and $S_{xx} = \sum_{i=1}^n (x_i \bar{x})^2$, where $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ and $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$. Then $\hat{\beta}_1 = \frac{S_{xY}}{S_{xx}}$ and $\hat{\beta}_0 = \bar{Y} \hat{\beta}_1 \bar{x}$ are the least squares estimators for β_1 and β_0 , respectively. Suppose $\varepsilon_1, \ldots, \varepsilon_n$ is a random sample from the normal distribution with mean 0 and variance σ^2 .

 (a). (10%) Find the distribution of $\hat{\beta}_1$.
 - (b). (10%) Suppose we fit the model $Y = \beta_0 + \beta_1 x + \varepsilon$ to n data points $(x_1, y_1), \ldots, (x_n, y_n)$. Also, suppose that $\sigma^2 = 1$. Consider the test of the hypothesis $H_0: \beta_1 = 0$ against $H_a: \beta_1 \neq 0$. Give the rejection region of above test in terms of the n data. Use a significance level $\alpha = .05$.

國立中央大學八十六學年度碩士班研究生入學試題卷

所別: 數學研究所 不分紅 科目:

統計

共2頁第/頁

• SHOW YOUR WORK & GOOD LUCK!

- Use Table 1 & Table 2 if necessary
- 1. (10%) Let Y_1, Y_2, \ldots, Y_6 be a random sample from a normal population with a mean μ and a variance of σ^2 . Let $Y = \frac{1}{5} \sum_{i=1}^5 Y_i$ and let $U = \sum_{i=1}^5 (Y_i \bar{Y})^2$. What is the distribution of $\frac{2Y_5 2\mu}{\sqrt{U}}$? Why?
- 2. (20%) If Y_1, Y_2, \ldots, Y_n denotes a random sample from an exponential distribution with a mean of θ .
 - (a). (14%) Find 2 sufficient statistics for θ. Justify your answers.
 - (b). (6%) Which sufficient statistics in (a) is better in terms of sufficiency? State your reason.
- 3. (15%) An urn contains θ white balls and $N \theta$ black balls. A sample of n balls is to be selected without replacement. Let Y denote the number of white balls in the sample. Find the method of moments estimator of θ .
- 4. (20%) Suppose Y_1, Y_2, \ldots, Y_n denotes a random sample from the Weibull density function, given by

$$f(y) = \begin{cases} \frac{2y}{\theta} e^{-\frac{y^2}{\theta}}, & y > 0\\ 0, & \text{otherwise} \end{cases}$$

- (a). (10%) Find the minimal sufficient statistics for θ. Justify your answer.
- (b). (10%) Find a MVUE for θ . That is to find a minimum variance unbiased estimator for $\tilde{\theta}$. Justify your answer.
- 5. (15%) Two methods for teaching reading were applied to two randomly selected groups of elementary schoolchildren and compared on the basis of a reading comprehension test given at the end of the learning period. The sample means ȳ and sample variances s² computed from the test scores are shown in the accompanying table. Find a 90% two-sided confidence interval for (μ₁ − μ₂). Provided that the scores are normally distributed with mean μ₁, μ₂ and the same variance. Note that if Y₁,..., Yn is a random sample then sample mean Ȳ = 1/n Σⁿ_{i=1} Y_i and sample variance S² = 1/n-1 Σⁿ_{i=1} (Y − Ȳ)².

	11-1-1=
Method 1	Method 2
8	9
63	67
50	72
	8 63

(a). (10%) Find the distribution of β_1 .

- 6. (20%) Let $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ for i = 1, ..., n be n random variables. Let $S_{xY} = \sum_{i=1}^n (x_i \bar{x})(Y_i \bar{Y})$ and $S_{xx} = \sum_{i=1}^n (x_i \bar{x})^2$, where $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ and $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$. Then $\hat{\beta}_1 = \frac{S_{xX}}{S_{xx}}$ and $\hat{\beta}_0 = \bar{Y} \hat{\beta}_1 \bar{x}$ are the least squares estimators for β_1 and β_0 , respectively. Suppose $\varepsilon_1, \ldots, \varepsilon_n$ is a random sample from the normal distribution with mean 0 and variance σ^2 .
 - (b). (10%) Suppose we fit the model $Y = \beta_0 + \beta_1 x + \varepsilon$ to n data points $(x_1, y_1), \dots, (x_n, y_n)$. Also, suppose that $\sigma^2 = 1$. Consider the test of the hypothesis $H_0: \beta_1 = 0$ against $H_a: \beta_1 \neq 0$. Give the rejection region of above test in terms of the n data. Use a significance level $\alpha = .05$.