

所別:

科目: 不分組

微分方程

共 【 頁 第

In the following y = y(t), x = x(t), $y' = \frac{dy}{dt}$, $x' = \frac{dx}{dt}$, ..., $y^{(k)} = \frac{d^ky}{dt^k}$

1. Find all solutions of the following:

(38%)

- (1) y''' 1 = 0; y(0) = 0, y'(0) = y''(0) = 2.
- (2) $y''' 3y^2 + 4y = e^{2t} + e^{-t}$ (3) $(e^y + xe^y)dx + xe^ydy = 0$

(3)
$$(e^y + xe^y)dx + xe^y du = 0$$

(4) x' = x - y $y' = x + y + \cos t$

$$y' = x + y + \cos t$$

- 2. Let L(y) = y' + a(t)y + b(t), where a, b are continuous functions on an interval I. Then find the general solution of L(y) = 0. Justify your result. (10%)
- 3. Let $L(y) = t^2y'' + aty'' + bt$, where a, b are constants. Consider the Euler equation: (15%)

$$L(y) = 0 \qquad \text{for } t \ge 0$$

Let r_1 , r_2 are roots of q(r) = r(r-1) + ar + b..

- (1) Show the two linearly independent solutions of this equation are given by $\phi_1(t)=t^{r_1}$, $\phi_2(t) = t^{r_2}$ if $r_1 \neq r_2$ and given by $\phi_1(t) = t^{r_1}$, $\phi_2(t) = t^{r_1} \ln t$ if $r_1 = r_2$.
- (2) Give solutions for the equation: L(y) = g(t) where g(t) is a continuous function on an interval.
- 4. Let let $W(\phi_1, \dots, \phi_n)$ be the Wronskian of n solutions ϕ_1, \dots, ϕ_n of

(15%)

$$L(y) = y^{(n)} + a_1(t)y^{(n-1)} + \cdots + a_n(t)\dot{y} = 0$$

on an interval I, where a_i $(i = 1, \dots, n)$ are continuous functions on I. Prove:

- (1) If $W(\phi_1, \dots, \phi_n)(t) \neq 0$ on I then ϕ_1, \dots, ϕ_n are linearly independent on I.
- (2) If $t_0 \in I$ then $W(\phi_1, \dots, \phi_n)(t) = \exp \left[-\int_{t_0}^t a_1(s) ds \right] W(\phi_1, \dots, \phi_n)(t_0)$ for $t \in I$.
- 5. Consider a differential equation: $L(y) = y^{(n)} + a_1 y^{(n-1)} + \cdots + a_n y = 0$ where a_i $(i = 1, \dots, n)$ are constants. If all roots of characteristic polynomial of L(y) = 0 has nonpositive real parts then show that all soltions of L(y) = 0 are bounded. (10%)
- 6. Consider the equation

(12%)

$$ty'' + (1 - t)y' + y = 0$$

- (1) Find the roots of the indicial polynomial.
- (2) What is the form of the solution of L(y) = 0. Find the first four terms of the series of the solution.