國立中央大學八十四學年度碩士班研究生入學試題卷

所別: 數學研究所 組

ļ

科目: 數值分析

典/頁第/頁

1. (10 points) Find the Newton interpolating polynomial for these function values:

2. (20 points) Let

$$A = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{pmatrix}$$

- 2.1 Use Gaussian elimination with scaled row pivoting and determine the factorization of the form PA = LU.
- 2.2 Find the Cholesky factorizations of the matrix A.
- 3.1 (10 points) State the Gershogrin's Theorem.
- 3.2 (10 points) Without Computing them, prove that the eigenvalues of the matrix

$$A = \begin{pmatrix} -1 + i & 0 & \frac{1}{4} \\ \frac{1}{4} & 1 & \frac{1}{4} \\ 1 & 1 & 3 \end{pmatrix}$$

satisfy the inequality $\frac{1}{2} \le |\lambda| \le 5$.

4. (20 points) Carry out one iteration of Newton's method from x=2 for the function $f(x)=x^4-12x^3+47x^2-60x$. Which root are you converging to? What happens if you start from x=1?

- 5. (10 points) Suggest ways to avoid loss of singuificance in these calculations:
- $5.1 x \sin x.$
- $5.2 \sqrt{x^2+1}-x.$
- 6. (10 points) Suppose that the bisection method is started with the interval [2, 18]. How many steps should be taken to compute a root with relative accuracy of one part in 10^{-13} ?
- 7. (10 points) Prove that if a matrix A is positive definite and symmetric, then its eigenvalues are real and positive.