国立中央大學八十三學年度研究所碩士班入學試題卷

數學研究所 系所別:

頂 第 ĪĪ

1. (2S pts)

(1) Show directly by definition that the interval (0,1) is not compact in R.

(1) Show effectly by definition
$$\frac{1}{(2n)!} = \sum_{n=0}^{\infty} \left[\left(\frac{x^{2n}}{(2n)!} + \frac{x^{2n+2}}{(2n+2)!} \right) - \left(\frac{x^{2n+1}}{(2n+1)!} + \frac{x^{2n+3}}{(2n+3)!} \right) \right] \text{ true? (x is a real number) Justify your answer.}$$

real number) Justify your answer.

(3) Let
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^3}$$
. Prove $f'(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ for $x \in (-\infty, \infty)$?

(4) Let f(x) = x if x is rational and f(x) = 1 - x if x is irrational. Show that f is continuous only at $x = \frac{1}{2}$

- (1) Show that $\frac{1}{x-2}$ is continuous but not uniformly continuous on [0,2).
- (2) If g(x) is differentiable on [0,2] and satisfies g(2)=g'(2)=0 then prove that

(i)
$$\lim_{x\to 2} \frac{y(x)}{x-2}$$
 exists and (ii) $\frac{g(x)}{x-2}$ is uniformly continuous on $[0,2)$.

(12 pts)

- (1) Let A be a subset of R which has an upper bound. Prove: $\sup A \in \overline{A}$
- (2) Let f be a continuous real-valued function defined on a compact metric space X. Prove: f assumes its maximum value on X.

4. (12 pts)

Discuss the pointwise and uniform convergence for $x \in (0,1)$, as $n \to \infty$, of the following sequences:

(1)
$$\{n e^{-nx^2}\}$$
 (2) $\{(\sin x) e^{-nx^2}\}$

5. (12 pts)

Evaluate, justifying all setps, the integral $\int_{0}^{\infty} e^{-x^2} \sin(2xy) dx$.

6. (12 pts)

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $f(x,y) = (e^x \cos y, e^x \sin y)$. Show f is invertible at every $(x,y)\in\mathbb{R}^2$, but f has no inverse defined on the whole \mathbb{R}^2 .

7. (12 pts)

(i) Starting from
$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt$$
, show:

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{n+1}}{n+1} \quad \text{for } |x| < 1.$$

(2) Is the following equality true? Justify your results.

$$\ln 2 = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{n+1}$$