國立中央大學 111 學年度碩士班考試入學試題

所別: 數學系碩士班 數學組(一般生)

共1頁 第1頁

科目: 高等微積分

第2到6題為證明題需證明過程,無證明過程者不予計分。

Let \mathbb{Q} be the set of rational numbers and \mathbb{R} be the set of real numbers.

- 1. (20 points) True or false. (just write down your answer, do not give any reason)
 - (1.1) (4 points) Every bounded monotonic sequence in \mathbb{Q} is convergent.
 - (1.2) (4 points) Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences of positive real numbers, then

$$\limsup_{n\to\infty}(x_n\times y_n)\leq (\limsup_{n\to\infty}x_n)(\limsup_{n\to\infty}y_n).$$

- (1.3) (4 points) Suppose f and g are uniformly continuous on \mathbb{R} , then fg is also uniformly continuous on \mathbb{R} .
- (1.4) (4 points) In \mathbb{R}^2 , the existence of all directional derivatives at a point does not imply differentiability.
- (1.5) (4 points) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous on \mathbb{R}^n and let B be a bounded subset in \mathbb{R}^n . Then f(B) is bounded.
- 2. (10 points) We say that $A \subseteq \mathbb{R}^n$ is compact if every open cover of A has a finite subcover. Show that the set $\{x = (x_1, \dots, x_n) \in \mathbb{R}^n : \sqrt{\sum_{i=1}^n x_i^2} < 1\}$ is not compact by the definition.
- 3. (15 points) Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b]. Prove that f is Riemann integrable on [a, b].
- 4. (15 points) Let $\{a_n\}$ be bounded sequence in \mathbb{R} . Prove that $f(x) = \sum_{n=0}^{\infty} \left(\frac{a_n x^n}{n!}\right)^2$ is continuous on \mathbb{R} .
- 5. (20 points) A function is said to be of class C^r if the first r derivative exist and are continuous. A function is said to be of class C^{∞} if it is of class C^r for all positive integers r. Give an example of a C^{∞} function that is not analytic and explain your answer.
- 6. (20 points) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2y}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) (10 points) Show that f is continuous at (0,0).
- (b) (10 points) Investigate the differentiability of f at (0,0).