國立中央大學 110 學年度碩士班考試入學試題

所別: 數學系碩士班 數學組(一般生)

共上頁 第1頁

科目: 高等微積分

本科考試禁用計算器

*請在答案卷(卡)內作答

第(2)至(6)題為證明題需證明過程,無證明過程者不予計分

Let \mathbb{Q} be the set of rational numbers and \mathbb{R} be the set of real numbers.

- (1) (20 points) True or false? (just write down your answer, do not give any reason)
 - (1.1) (2 points) Every Cauchy sequence in \mathbb{Q} is convergent.
 - (1.2) (2 points) If $\{x_n\}$ and $\{y_n\}$ are bounded sequences in \mathbb{R} , then

$$\limsup_{n\to\infty}(x_n\times y_n)\leq (\limsup_{n\to\infty}x_n)(\limsup_{n\to\infty}y_n).$$

- (1.3) (2 points) Every compact set in the metric space is closed and bounded set.
- (1.4) (2 points) If A is connected in \mathbb{R}^n , then $\mathbb{R}^n \setminus A$ is also connected.
- (1.5) (2 points) The function f(x) = x is continuous on $[0, 1] \cup \{2\}$.
- (1.6) (2 points) Let f be a continuous real function on \mathbb{R} and let Z(f) be the set of all $p \in \mathbb{R}$ at which f(p) = 0. Then Z(f) is closed.
- (1.7) (2 points) The function $f(x) = \frac{1}{x}$ is uniformly continuous on (0, 1).
- (1.8) (2 points) Let f be a real function on [0,2], then f is Riemann integrable on [0,2] if and only if |f| is Riemann integrable on [0,2].
- (1.9) (2 points) Every differentiable function on [0, 2] is Riemann integrable.
- (1.10) (2 points) Let $\{P_n\}_{n\in\mathbb{N}}$ a uniformly convergent sequence of polynomials on [0,2] and $f=\lim_{n\to\infty}P_n$. Then f is differentiable.
- (2) (10 points) Let $B = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 1\}$. Show that B is open set.
- (3) (15 points) Let (M,d) be metric space and $\{x_n\}_{n=1}^{\infty} \subseteq M$ converge to $x \in M$. Show that the set $\{x_1, x_2, x_3, \dots\} \cup \{x\}$ is compact set.
- (4) (20 points) Every rational x can be written in the form $x = \frac{m}{n}$, where n > 0, and m and n are integers without any common divisors. When x = 0, we take n = 1. Consider the function f defined on \mathbb{R} by

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{n} & \text{if } x = \frac{m}{n} \end{cases}$$

Prove that f is continuous at every irrational point, and that f has a discontinuity at every rational point.

- (5) (15 points) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous on \mathbb{R}^n and let B be a bounded subset in \mathbb{R}^n . Prove or disprove (if you think the following statement is false, give a counter-example and prove that your example works) that f(B) is bounded.
- (6) (20 points) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) (10 points) Show that f is continuous at (0,0).
- (b) (10 points) Investigate the differentiability of f at (0,0).