國立中央大學109學年度碩士班考試入學試題

所別: 數學系碩士班 數學組(一般生)

共上頁 第1頁

科目: 高等微積分

本科考試禁用計算器

*請在答案卷(卡)內作答

Show your work for all of the questions below. Your method must justify your answer. No credit for answers without supporting work.

Proofs: (In all of the questions below, [a, b] denotes a bounded closed interval in \mathbb{R} with a < b.)

- 1. (10%) Prove that $x \cos \frac{1}{x}$ is uniformly continuous on $(0, \infty)$.
- 2. (15%) Let $f:[a,b]\to\mathbb{R}$ be an increasing function. Show that f is (Riemann) integrable on [a,b].
- 3. (15%) Suppose that f is continuous on $[a,b] \subset \mathbb{R}$, g is integrable on [a,b] and $g(x) \geq 0$ for all $x \in [a,b]$. Prove that

$$\int_a^b f(x)g(x) \ dx = f(c) \int_a^b g(x) \ dx \quad \text{ for some } c \in [a,b].$$

- 4. (15%) Suppose that E is a nonempty subset of \mathbb{R} and that $f_n \to f$ uniformly on E as $n \to \infty$. Prove that if each f_n is continuous on E, then f is continuous on E.
- 5. (15%) Prove that $\sum_{n=1}^{\infty} \sin(x/n^2)$ converges uniformly on any bounded interval of \mathbb{R} .
- 6. (15%) Let C[a,b] denote the space of continuous functions $f:[a,b]\to\mathbb{R}$. Define

$$||f|| := \sup_{x \in [a,b]} |f(x)|.$$

Show that $\rho(f,g) := ||f-g||$ is a metric on $\mathcal{C}[a,b]$, and the metric space $(\mathcal{C}[a,b],\rho)$ is complete.

7. (15%) Prove that

$$f(x,y) = \begin{cases} \frac{3x^3 - 2x^2y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

is continuous and has first-order partial derivatives everywhere on \mathbb{R}^2 , but f is not differentiable at (0,0).

