國立中央大學 105 學年度碩士班考試入學試題

所別: 數學系 碩士班 數學組(一般生) 共工百

數學系 碩士班 應用數學組(一般生)

碩士班 應用數學組(在職生)

科目:

本科考試禁用計算器

Instructions: Do all 7 problems. Show your work. The notations: R, is the set of all real numbers, $P_n(\mathbb{R})$ is the set of all polynomials of degree n with real valued coefficients.

1. (a) For any subsets U, W of vector space V, define

$$U + W = \{u + w | u \in U, w \in W\}.$$

Prove that if U, W are subspaces of V, then U+W is also a subspace of V. (10 pts)

- (b) Let V be a finite dimensional inner product space, and U and W be two subspaces of V. If $\dim U < \dim W$, show that there exists a nonzero vector w in W such that w is orthogonal to all vectors in U. (10 pts)
- 2. Suppose A is a $n \times n$ square matrix with $A^k = 0$ for some positive integer k and x is a $n \times 1$ matrix such that $A^{k-1}x \neq 0$. Show that $\{x, Ax, \cdots, A^{k-1}x\}$ is linearly independent. (10 pts)
- 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

$$T(x, y, z) = (x + 2y + z, y + z, -x + 3y + 4z).$$

Find a basis for the null space of T, the dimension of the null space, dim N(T) and the dimension of the range, dimR(T). (10 pts)

- 4. Let A be an invertible $n \times n$ matrix with real coefficients and adj(A) its classical adjoint.
 - (a) What is the relation between A^{-1} and adj(A)? (2 pts)
 - (b) Show that if adj(A) is symmetric, then A is also symmetric. (4 pts)
 - (c) Show that if adj(A) = I, $n \ge 2$, then A = I or A = -I. (4 pts)
- 5. Let A be the 3×3 matrix with eigenvalues $\lambda_1 = 1$, $\lambda_2 = -1$ and $\lambda_3 = 2$ for which

Let A be the
$$3 \times 3$$
 matrix with eigenvalues $\lambda_1 = 1$, $\lambda_2 = -1$ and $\lambda_3 = v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $v_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$ are the corresponding eigenvectors.

- (a) Find A. (10 pts)
- (b) Calculate $(A + \hat{I})^{100}$. (5 pts)
- 6. Let $V = P_n(\mathbb{R})$ with the inner product $\langle f(x), g(x) \rangle = \int_{-1}^1 f(t)g(t) \frac{1}{\sqrt{1-t^2}} dt$, and consider the subspace $P_2(\mathbb{R})$ with the standard ordered basis $\beta = \{1, x, x^2\}$. Use the Gram-Schmidt process to replace β by an orthonormal basis $\{v_1, v_2, v_3\}$ for $\hat{P}_2(\mathbb{R})$. (10 pts)
- 7. Let $A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 3 \end{pmatrix}$.
 - (a) Find the minimal polynomial of A. (10 pts)
 - (b) Explain why A is diagonalizable or not diagonalizable. (5 pts)
 - (c) Find a Jordan canonical form J of A. (5 pts)
 - (d) Find a matrix Q such that $Q^{-1}AQ = J$. (5 pts)