答案請務必寫完整,否則將扣分

- 解釋下列名詞 (25%)
 - Convex function. (5%) 1.
 - Shadow price. (5%) 2.
 - Traveling salesman problem. (5%) 3.
 - Finite-state Markov chain. (5%) 4.
 - Chapman-Kolomogrov equations. (5%) 5.
- (15%) The following simplex tableau shows the optimal solution of a maximization Linear Programming (LP) problem. Suppose that x_3, x_4 are the slack variables in the first and second constraints of the original problem. These constraints are the ≤ type.

	Z	x_I	x_2	x_3	x_{4}	RHS
z	1	5	0	3	0	12
x_2	0	1	l		0	4
x_d	0	2	0	1	1	10

- Write the original LP problem. (8%) 1.
- Obtain the optimal solution of the dual problem from the tableau. (7%) 2.
- (10%) Suppose that a random variable T has an exponential 三、 distribution. Show that $P\{T > t + \Delta t \mid T > \Delta t\} = P\{T > t$.
- (20%) Parking lot at A department is limited to only five spaces. 四、 Cars making use of this space arrive according to a Poisson distribution at the rate of six cars per hour. Parking time is exponentially distributed with a mean of 30 minutes. Visitors who cannot find an empty space immediately on arrival may temporarily wait inside the lot until a parked car leaves. The temporary spaces can hold only three cars. All other cars that cannot park or find a temporary waiting space must go elsewhere. Determine the following:
 - The probability p_n of n cars being in the system. (7%)
 - The effective rate at which cars arrive the lot. (1%) 2.
 - The average number of occupied parking spaces. (6%)
- (15%) Solve the following problem by using Kuhn-Tucker 五、 conditions.

Maximize
$$f(\mathbf{x}) = \ln(x_1 + x_2)$$

Subject to
 $x_1 + 2x_2 \le 5$
 $x_1, x_2 \ge 0$

(15%) Describe how to use Monte Carlo simulation to estimate 六、 the area of a circle whose equation is

$$(x-1)^2 \div (y-2)^2 = 25$$
.