Score Distribution	_ : :
I. Multiple Choice II. Analytical Problems	
2*9=18 (1)6 (2) 10 (3)6 (4)5 (1) 5 (2) 10 (1) 5 (2) 5 (3) 5	(4) 5 (1) 10 (2) 10

I. Choose the most appropriate answer

- 1. Which of the following is the order of the scientific method?
 - 1. Model construction 2. Observation
- Model validation
- 4. Problem definition
- 5. Implementation 6. Problem solution

- a: 1-3-2-4-6-5
- b. 2-4-1-3-6-5
- c. 4-2-1-3-5-6
- d. 2-4-6-1-3-5
- 2. Which of the following is a linear equation? (A, B, C are constants and X, Y, Z are variables.)
- a. $AX^2 + BY^2 = C$
- b. $A^2X-B^2Y=C^2$
- c. AX + BY + CXY = D
 - d. AX BY/Z = C
 - 3. What does "constrained optimization" mean?
 - a. The values of the decision variables are subject to limitations.
 - b. The maximization value of the objective function is not as large as it should be.
 - c. The minimization value of the objective function is not as small as it should be,
 - d. The value of the objective function is subject to limitations.
- 4. When is the simplex algorithm for maximization finished?
- a. When the C_i Z_j row consists of zeros and negative numbers. b. When the C_i Z_j row consists of zeros and positive numbers.
- c. At the third iteration.
- 5. How many variables will there be in the simplex solution to an LP problem?
- a. The number of variables will equal the number of decision variables.
- b. The number of variables will equal the number of iterations.
- c. The number of variables will equal the number of constraints.
- d. The number of variables will equal the number of extreme points of the feasible region.
- 6. Which of the following is a proper mathematical operation on a row of a simplex tableau?
- a. Multiply every element by a constant.
- b. Add one row to another row.
- e. Add a multiple of one row to another row.
- All of the above.
- 7. Which of the following does NOT change when working through the simplex algorithm?
- a. The coefficients of the objective function.
- b. The coefficients of the constraints.
- The right-hand sides of the constraints.
- d. The variables in the basis column.
- The use of large M in an objective function occurs when this type of variable is involved:
- b. surplus
- c. decision
- d. artificial
- 9. An assignment problem involves 3 workers and 4 jobs. The minimum number of crossing lines over zeros needed for an optimal
- 7

乙組 科目:

共之頁 第2頁

Analytical Problems II.

Given the problem:

Maximize
$$Z = 5X_1 + 2X_2$$

Subject to

$$X_1 + X_2 \le 50$$

 $3X_1 + X_2 \ge 90$
 $X_2 = 10$
 $X_1, X_2 \ge 0$

$$X_2 =$$

$$X_1, X_2 \ge 0$$

- Transform into standard form with slack, surplus, and artificial variables.
- (2) Find the optimal solution by using simplex method.
- (3) Is there "degeneracy" in the solution process? Why or why not?
- (4) Formulate the dual of the given primal model.

Given the problem:

Minimize
$$Z = 5X_{11} + 6X_{12} + 7X_{13} + 8X_{21} + 8X_{22} + 9X_{23}$$

$$X_{11} + X_{12} + X_{13} = 1$$

 $X_{21} + X_{22} + X_{23} = 1$

$$X_{21} + X_{22} + X_{23} = 1$$

$$X_{11} + X_{21} \leq$$

$$X_{12} + X_{22} \leq 1$$

$$X_{13} + X_{23} \leq X_{ii} \geq 0$$

- (1) By observing the given model, which type of special-purpose problem would you consider it is?
- (2) Instead of using simplex method, use the appropriate algorithm to solve the problem.
- 3. In corresponding to each of 4 different scenarios (refer to the below figure), which network model would you consider to apply for solving the problem?

- 1. Factory
- 2. One of the computer terminals
- 3. Shipping port
- 4. Last project activity
- Intermediate cities
- 2. Computer terminals
- Railroad junctions
- 4. Intermediate project activities
- (1) A trucking firm must make a delivery from its central distribution terminal to a factory in another city. In the network (formed by the terminal, factory, and several intermediate cities), there are various routes that the truck can take.
- (2) A manufacturing plant desires to connect computer terminals at several locations across the plant site to the server at its computing center with coaxial cable.
- (3) A coal company desires to transport coal from its mine to an shipping port via a network of rail lines which link the mine, port, and several railroad junctions.
- A bank wishes to install a new computerized check-processing system and there are a number of activities required to complete this project.
- 4. There are three movie theaters in Chungli. Students of NCU go to the movies once a week. The following transition matrix contains the probabilities of the theaters that the students will visit.

•		Week n+1	
Week n	Theater A	Theater B	Theater C
Theater A	.5	.3	.2
Theater B		.7	.2
Theater C	.1	.1	.8

- (1) Determine the steady-state probabilities for each theater.
- (2) During a year (52 weeks), how many weeks will the students be visiting Theater A?