國立中央大學八十六學年度碩士班研究生入學試題卷

所別: 太空科學研究所 不分組 科目:

流體力學

共一頁 第十頁

- [10%] 1. Derive the dispersion relation of sound waves in a neutral atmosphere.
- [10%] 2. Show that a fluid can be considered as an incompressible fluid when the characteristic wave speed is much less than the sound speed.
- [20%] 3. Determine the velocity distribution of a 3-D potential flow around a spherical barrier with radius a. The flow is uniform at $x = -\infty$ with flow velocity $\hat{V}(x = -\infty) = V_0 \hat{x}$.
 - 4. Consider an incompressible viscous fluid passing through a semi-infinite flat plate. Let the plane of the plate be the xz half plane with x > 0. The flow is uniform at x < 0, with flow velocity $\vec{\nabla}(x < 0) = V_0 \hat{x}$. The dynamic viscous coefficient of this fluid is $v=\eta/\rho$, (where η is the viscous coefficient, and ρ is the mass density of the fluid)
- [10%] (a) Derive the Prandlt's boundary layer flow equation by scale analysis for velocity field $V_x(x,y)$ and $V_y(x,y)$ at x > 0 and y > 0.
- [5%] (b) Find the dependence between boundary layer thickness and Reynolds number.
- [5%] (c) Find the dependence between boundary layer thickness and distance x from x = 0.
- [20%] 5. Flow between rotating cylinders is often called Couettte flow. Consider the motion of an incompressible viscous fluid between two infinite coaxial cylinders with radii R₁ and R₂ (R₂ > R₁), rotating about their axis, z-axis, with angular velocities Ω₁ and Ω₂, respectively. Determine the velocity distribution V(r) of this Couettte flow.
 - 6. Let us consider two special cases for the Couettte flow described in problem 5. Case A with R₁ = 0, and Case B with R₂ →∞, and Ω₂ = 0. In both cases, a finite amount of fluid is sitting on a smooth surface at z=0 and is subject to a gravitational field.
- [10%] (a) Determine the equation of fluid surface, h(r), in Case A for $0 < r < R_2$ and boundary condition $h(r) = h_0$ at r = 0.
- [10%] (b) Determine the equation of fluid surface, h(r), in Case B for $r > R_1$ and boundary condition $h(r) = h_0$ at $r \to \infty$.