## 國立中央大學九十一學年度碩士班研究生入學試顯卷

所別: 梭槭工程學系 乙組 科目: 機械材料及材料力學 共 2 页 第 1 頁

-.25%

- (1) Show that the atomic packing factor for (10%)
- (a)Body Center Cubic is 0.68
- (b) Face Center Cubic is 0.74
- (2) What is the chief difference between (15%)
  - (a)heat-treatable and nonheat-treatable alloys?
  - (b)natural aging and artificial aging processes?
  - (c)isothermal transformation diagram and continuous cooling transformation diagram?
  - (d)spheroidite and tempered martensite structures?
  - (e)hardness and hardenability?

- (1) Sketch the specific volume as a function of temperature, upon cooling from the liquid melt, for amorphous (as curve A), semicrystalline (as curve B) and crystalline (as curve C) materials. (6%). Point out the melting point (Tm) and glass transition temperature (Tg) in this scheme. (4%)
- (2) Briefly interpret the following terms, with an aid of equations or examples. (15%)
  - (a) Galvanic series that is useful in corrosion. (3%)
  - (b) Schottky defect that exists in a ceramic material. (3%)
  - (c) Electron mobility for a conducting material. (3%)
  - (d) Magnetic susceptibility of a magnetic material. (3%)
  - (c) Sketch an energy diagram for the Ruby laser, showing electron excitation and decay path. (3%)

三. 25%

- Calculate the deflections  $\delta_b$  and  $\delta_c$  at points B and C, respectively, of the cantilever beam ACB shown in Fig. 1. Assume  $M_0 = 35$  in.-kip, P = 3.6 kip, L = 8 ft, and  $EI = 2.1 \times 10^9$  lb-in.<sup>2</sup> (12%)
- (2) Determine the shear stress at points B and C on the web of the beam located at section a-a shown in Fig. 2. (8%)
- (3) Determine the maximum shear stress acting at section a-a in the beam shown in Fig. 2. (5%)



## 國立中央大學九十一學年度碩士班研究生人學試題祭

Diff)):

機械工程學系

る顔 ■ 科符:

機械材料及材料力學

共卫班 第2百

四.25%

- (1) In general, fine grain could improve mechanical properties. By using ECAE (Equal Channel Angular Extrusion), material could obtain fine-grained microstructure. ECAE is a process involving pushing a work piece through two channels of equal cross section that meet at an included angle Φ (Fig. 3). This process causes large strain in the material. Assume that in ECAE process the particles in the material move in the same velocity.
  - (a) What is the strain for the case described in Fig. 4. (5%)
  - (b) What is the strain for the case described in Fig. 5. (5%)



- (2) The two shafts are made of A-36 steel. Each has a diameter of 25mm and they are connected using the gears fixed to their ends. Their other ends are attached to fixed supports at A and B. They are also supported by bearing at C and D, which allow free rotation of the shafts along their axes. If a torque of 500 N · m is applied to the gear E as shown in Fig. 6.
  - (a). Determine the reactions at A and B. (10%)
  - (b). Determine the rotation of gear at E. Take  $G_{\rm si}$ = 75 GPa (5%)



Fig. 6