國立中央大學九十二學年度碩士班考試入學招生試題卷 共工頁 第一頁

系所別:	資訊工程學系	科目:	計算機結構
	網路學習科技研究所		

- 1. 詳細解釋下列名詞或回答下列問題 (每小題 5 分, 合計 25 分)
 - (a) Write down the IEEE 754 representation (in hex format) for the value "-13.125"
 - (b) What is the advantage of two's complement representation when compared with signed-magnitude representation?
 - (c) Given an n-bit 2's complement representation $(x_{n-1} x_{n-2} x_1 x_0)$. What's the value that it represents (write down the equation but NOT any specific example)?
 - (d) Write down the Boolean equation of testing overflow in n-bit 2's complement addition.
 - (e) What is CPI?
- 2. About nanoprogramming technique:
 - (a) Sketch and explain the block diagram of nanoprogramming. (10%)
 - (b) Explain the reason why people use nanoprogramming for CISC processor control design. (5%)
- 3. For the hierarchical "carry-lookahead" adder design, please write down the Boolean equations for the following signals. (10%)
 - (a) 16-bit "Group Propagate" based on 4-bit Propagate Pi and 4-bit Generate Gi (i=0,1,2,3).
 - (b) 16-bit "Group Generate" based on 4-bit Propagate Pi and 4-bit Generate Gi (i=0,1,2,3).
- 4. Assume there is a 4KB cache with set-associative address mapping.

 And the cache is partitioned into 32 sets with 4 blocks in each set. The memory-address size is 32 bits, and the smallest addressable unit is byte.
 - (a) To what set of the cache is the address $000010AF_{16}$ assigned? (10%)
 - (b) If the addresses $000010AF_{16}$ and $FFFF7xyz_{16}$ can be as assigned to the same cache set, what values can the address digits xyz have? (10%)

注:背面有試題

多考用

國立中央大學九十二學年度碩士班考試入學招生試題卷 共 7 頁 第 2 頁

系所別:

資訊工程學系

網路學習科技研究所

5.

- (a) What kinds of hazard may occur on the pipeline architecture? (5%)
- (b) Consider a pipeline machine with 5 stages (instruction fetch, instruction decode, execution, memory access, and write back) and load-store instruction set. What hazards will occur in the following program (please indicate the numbers of the instructions)? And how to solve it? (15%)

1.	Load	R1, 3(R2)	$;R1 \leftarrow Mem(R2+3)$
2.	Add	R3, R2, R7	;R3 ← R2+R7
3.	Store	0(R4), R3	$;Mem(R4) \leftarrow R3$
4.	Sub	R2, R1, R5	;R2 ← R1-R5
5.	Load	R6, 4(R3)	$;R6 \leftarrow Mem(R3+4)$
6.	Add	R8, R6, R1	;R8 ← R6+R1
7.	OR	R6, R4, R5	;R6 ,← R4 or R5
8.	Sub	R3, R7, R2	;R3 ← R7-R2

6. What is daisy-chain arbitration? And what is its application in the computer systems? (10%)

