1. (20% = 5% + 5% + 10%) Draw the schematic energy band representations for a Si PN diode at (a) thermal equilibrium, (b) reverse bias. And (c) with built-in potential \(V_{bi} \), calculate the total depletion layer from Poisson’s equation, where \(N_d \) is acceptor concentration, \(N_A \) is donor concentration, \(\varepsilon \) is Si dielectric constant.

2. (20 %) To measure the carrier concentration directly, the most commonly used method is the Hall effect. If you have a p-type Si semiconductor, draw the basic measurement setup to measure its carrier concentration. You need to show how to measure, and what concentration you get from your measurement.

3. (10% = 5% + 5%) (a) What is the main reason to induce the long transient behavior in the diode forward-to-reverse-bias transition time? (b) How to reduce a PN diode switching turn-off time?

4. (10% = 5% + 5%) An ideal MOS capacitor at 300 K has an Al gate with an oxide thickness \(t_{ox} \) on p-type Si with the metal work function \(\phi_m = 4.10 \text{ V} \), and the p-type substrate work function \(\phi_s = 4.93 \text{ V} \).
 (a) Calculate the ideal flat band potential voltage \(V_{FB0} \).
 (b) Calculate the non-ideal flat band potential voltage \(V_{FB} \) if a fixed charge \(Q_f = 1 \times 10^{10} \text{ C/cm}^2 \) located at 0.5 \(t_{ox} \). Note that the \(C_{ox} = 1 \times 10^{10} \text{ F/cm}^2 \).

5. (20% = 5% + 5% + 5% + 5%) An NMOS circuit is shown in Fig. 5(a), and a PMOS circuit is shown in Fig. 5(b).
 (a) Calculate \(V_{DS} \) if \(V_i = 2.0 \text{ V} \) in Fig. 5(a).
 (b) Calculate \(V_{DS} \) if \(V_i = 3.0 \text{ V} \) in Fig. 5(a).
 (c) Calculate \(V_{DS} \) if \(V_i = 2.0 \text{ V} \) in Fig. 5(b).
 (d) Calculate \(V_{DS} \) if \(V_i = 3.0 \text{ V} \) in Fig. 5(b).

If the solution of \(V_{DS} \) is difficult to calculate, the solution may be set in the form \(V_{DS} = a \times V_{DD} + b = 0 \), and calculate \(a \) and \(b \). For n-channel MOSFET, \(I_D = \beta_n (V_{GS} - V_{TH}) V_{DS} - V_{TH}^2 \) in the linear region, and \(I_D = \beta_n (V_{GS} - V_{TH})^2 \) in the saturation region. Assume \(\beta_n = 1 \text{ mA/V}^2 \), \(V_{DD} = 5 \text{ V} \), the threshold voltage \(V_{TH} = 1 \text{ V} \), and \(V_{FP} = -1 \text{ V} \). For p-channel MOSFET, the \(I_D \) can be obtained from the equations for n-channel MOSFET, and \(\beta_p = \beta_n \).

6. (20% = 5% + 5% + 5% + 5%) Briefly answer the following questions.
 (a) Assume an npn bipolar transistor is biased in saturation region. Sketch the minority distribution in the base region, and the energy band diagram from emitter to collector.
 (b) For an npn BJT, compare \(BV_{CEO} \) with \(BV_{CEO} \) and \(ICEO \) with \(ICEO \). Which one is larger and explain the reasons. \(BV_{CEO} \) is the breakdown voltage of collector-emitter with base open, and \(BV_{CEO} \) is the breakdown voltage of collector-base with emitter open. \(ICEO \) is the reverse-bias collector-emitter current with base open, and \(ICEO \) is the reverse-bias collector-base current with emitter open.
 (c) For an npn BJT, describe the Ebers-Moll model and the hybrid-\(\pi \) model.
 (d) Describe a Schottky clamped transistor can be used to reduce the storage time and increase the switching speed. The Schottky clamped diode is a normal npn bipolar device with a Schottky diode connected between base and collector.

![Fig. 5(a)](image)

![Fig. 5(b)](image)