國立中央大學98學年度碩士班考試入學試題卷

所別:電機工程學系碩士班 系統與生醫組(一般生) 科目:控制系統 共 2 頁 第 1 頁 系統與生醫組(學位在職生) *請在試卷答案卷(卡)內作答

1. The Nyquist diagram of the following loop gain transfer is given in Figure 1 for some gain K

$$G(s) = \frac{K(s+T_1)^2}{(s+T_2)(s+T_3)(s+T_4)(s+T_6)^2}$$

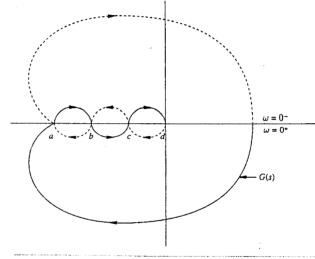


Figure 1

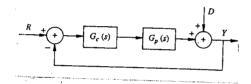
The diagram assumes $T_5 > T_1 > (T_2, T_3, and T_4) > 0$. Fill out the following blanks given the ranges of locations of the -1 point.

(1). There are ____ right half-plane loop gain poles.(1%)

Ranges where -1 Point is found		Number of clockwise encirclements of -1			Closed-loop system is stable or unstable
(2). To the left of a	()	()(6%)
(3). Between a and b	()	()(6%)
(4). Between b and c	()	į ()(6%)
(5). Between c and d	()	()(6%)

2. Use the Routh-Hurwitz criterion to decide for what values K the closed-loop systems corresponding to the following open-loop transfer functions are stable.(25%)

$$G(s) = \frac{K(s+3)}{(s+1)(s^2+3s+10)(s+10)}$$


注:背面有試題

國立中央大學98學年度碩士班考試入學試題卷

所別:<u>電機工程學系碩士班 系統與生醫組(一般生)</u> 科目:<u>控制系統</u> 共 2 頁 第 2 頁 系統與生醫組(學位在職生) *請在試卷答案卷(卡)內作答

3. As shown in the following figure, find the sensitivity of the closed-loop response to changes in the plant transfer function (15%), and find the response to output disturbances for the series compensator configuration when $G_c(s)$ is large.(10%)

Figure

4. Given the transfer function of a system

$$G_p(s) = \frac{s+1}{s(s-1)(s+20)}$$

For this system, answer the following questions.

- (1) The number of excess pole is ______.(5%)
- (2) The origin of the asymptotes is _____.(5%)
- (3) The angles that the asymptotes make with the real axis are _____.(5%)
- (4) The locus crosses the imaginary axis when K is ______(5%)
- (5)Breakaway points : _____.(5%)

注:背面有試題