國立中央大學九十三學年度碩士班研究生入學試題卷 共2頁 第/頁

所別: 電機工程學系碩士班 丙組 科目: 信號與系統

- 1. (A) (10%) Calculate the Fourier series representation of the periodical signal x(t) shown below.
 - (B) (5 %) Let y(t) be the output of an R-C circuit, shown below, whose input is x(t). What is the Fourier series representation of y(t)?
 - (C) (5%) Sketch the waveform of y(t).

- 2. Let $H(z) = \frac{z-1}{1-\frac{2}{3}z^{-1}+\frac{5}{9}z^{-2}}$ be the transfer function of an IIR (Infinite-Impulse-Response) system.
 - (A) (5 %) Write down the first 5 terms of the unit impulse response.
 - (B) (5 %) What is the meaning of causality? Is this a causal system?
 - (C) (5 %) Formulate the phase response of this system.
 - (D)(5 %) Depending on your answer to Question (B), anser either Question (a) or Question (b) in the following: (a) How to make this system causal if it is non-causal? (b) How to make this system non-causal if it is causal?
- 3. As shown in the figures below, the digital signals x(n) and y(n) are such that y(n) = x(n/2) if n is an even integer and y(n) = 0 if n is an odd integer. The spectrum of x(n) is also shown below, where f_s is the sampling frequency.
 - (A) (10 %) Express Y(z) in terms of X(z)?.
 - (B) (10 %) Sketch the spectrum of y(n).

國立中央大學九十三學年度碩士班研究生入學試題卷 共2頁 第2頁

所別: 電機工程學系碩士班 丙組 科目: 信號與系統

- 4. Shown below are the characteristics of two low-pass filters $H_1(f)$ and $H_2(f)$ and two high-pass filter $H_3(f)$ and $H_4(f)$. In the following questions (A) and (B), construct filters of desirable characteristics by using these filters as components.
- (A) (5 %) Depict how to construct a band-pass filter.
- (B) (5 %) Depict how to construct a band-reject filter.
- (C) (10 %) Depict how to construct a high-pass filter by using a low-pass filter and an all-pass filter.

- 5. The waveform of the step response of an analog filter is shown below. Also shown below are the waveform of a step and a ramp, respectively.
 - (B) (10 %) Sketch the impulse response of this filter.
 - (C) (10 %) Sketch the ramp response of this filter.

