國立中央大學九十一學年度碩士班研究生入學試題卷

- 1. $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & 1 & 2 \end{bmatrix}$ please compute $A^3 7A^2 + 11A 4I$ detailedly (10%)
- 2. (a) If λ is an eigenvalue of an invertible matrix $A \cdot x$ is the eigenvector corresponding to λ , prove that $\frac{1}{\lambda}$ and x are the eigenvalue of A^{-1} and its corresponding eigenvector respectively. (5%)

(b) If $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$, show the result of (a) by using any one eigenvalue of A. (5%)

- 3. (a) Suppose [x, y, z]=xi+yj+zk denotes a vector function, where x, y, z are Cartesian coordinates. If we have a function $f(x,y,z)=2x^2+3y^2+z^2$, find its directional derivative at the point P:(2,1,3) in the direction of the vector v=i-2k, and then explain the mathematic meaning of the above result. (10%) (b) Using the gradient of $f(x,y,z)=2x^2+3y^2+z^2$ to find the divergence of grad f. (5%)
- 4. Solve the differential equation $4x^2y'' + 4xy' y = \frac{12}{x} \quad (10\%)$
- 5. Find the inverse transform of the function

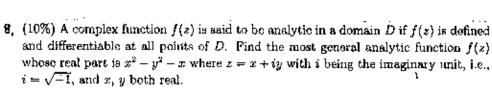
$$\ln(1+\frac{\omega^2}{s^2}) - (7\%)$$

6. Solve the integral equation

$$y(t) = t + \int_0^t \sin(t - \tau) y(\tau) d\tau$$
 (8%)

7. Find the cosine half-range expansion of the function f(x).

$$f(x) = \begin{cases} \frac{2k}{L}x, & \text{if } (0 < x < \frac{L}{2}) \\ \frac{2k}{L}(L - x), & \text{if } (\frac{L}{2} < x < L) \end{cases}$$
(10%)



- **9.** (10%) Let $f(z) = (z z_0)^m$ be a complex function where m is an integer and z_0 a complex constant. Integrate counterclockwise around the circle C of radius ρ with the center at z_0 , where $\rho > 0$.
- 10. (10%) Derive the following real integral:

$$\int_0^\infty \frac{1}{1+x^4} dx.$$

(Hint: You may use the residue integration method.)

