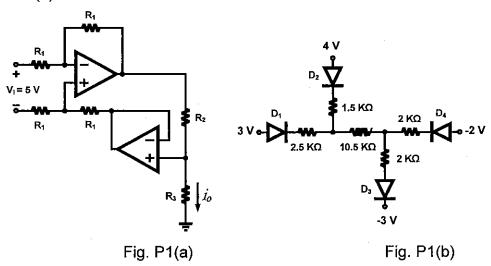
# 國立中央大學104學年度碩士班考試入學試題

所別:電機工程學系碩士班 固態組(一般生) 科目:電子學 共 3 頁 第 1 頁

電機工程學系碩士班 電波組(一般生)

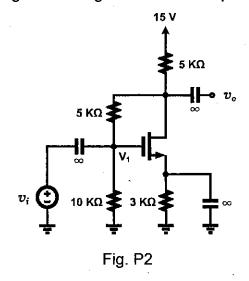
電機工程學系碩士班 系統與生醫組(一般生)


本科考試禁用計算器

\*請在答案卷(卡)內作答

# 1. 計算題 (14 分)

For the circuits shown in Fig. P1(a) and (b),


- 1-1 (6  $\Re$ ) Using the ideal op amp model ,please find the values of current  $i_0$  in Fig. P if R<sub>1</sub> = 1 kΩ, R<sub>2</sub> = 4 Ωk and R<sub>3</sub> = 8 kΩ.
- 1-2 (8 分) Using the ideal diode model ,please find the values of current for the diodes in Fig. P1 (b)



#### 2. 計算題 (16 分)

In the circuit shown in Fig. P2, NMOS transistor is characterized by  $V_t = 1 \text{ V}$ ,  $k'W/L = 2 \text{ mA/V}^2$ , and  $\lambda = 0$ .

- 2-1 (4 分)Find the labeled bias voltage  $V_1$
- 2-2 (4 分)Find the value of  $g_m$  at the bias point.
- 2-3 (8  $\Re$ )Find the voltage gain from signal source to output node  $v_o/v_i$



注:背面有試題

所別:電機工程學系碩士班 固態組(一般生) 科目:電子學 共 3 頁 第 ∠ 頁

電機工程學系碩士班 電波組(一般生)

電機工程學系碩士班 系統與生醫組(一般生)

本科考試禁用計算器

\*請在答案卷(卡)內作答



#### 3. 計算題 (20 分)

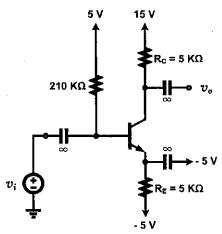
The transistor in the circuit shown in Fig. P3 is biased to operate in the active mode. Assuming that  $V_{BE}$  = 0.7V,  $V_T$  = 25 mV,  $\beta$  = 50 and  $r_o$  = infinity,

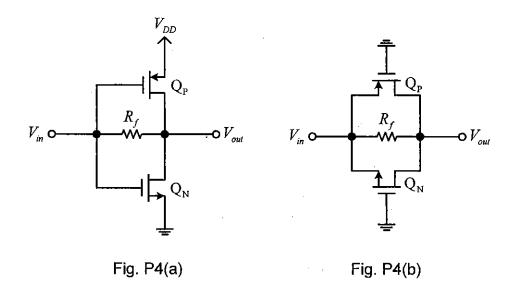
3-1 (4 分)Find the dc collector current lc

3-2 (4 分)Find the value of  $g_m$ .

3-3(4 分)Find the small-signal model parameter  $r_e$ .

3年(8分)Find the voltage gain from signal source to output node  $v_o/v_i$ 





Fig. P3

## 4. 計算題(16分)

Figures P4 (a) and (b) show the common source and common gate amplifiers with shunt-shunt feedback (note that bias circuits are not shown.). Assume the MOSFETs in the circuits are matched; each transistor has the same transcondcutance of  $g_m$  with infinite  $r_0$ . The body effect is neglect in the common-gate amplifier. In terms of  $g_m$  and  $R_f$ , please find the expression of the voltage gain  $v_{out}/v_{in}$  for the following,

4-1 (8 分) Common-source amplifier in Fig.P4(a).

4-2 (8 分) Common-gate amplifier in Fig.P4(b).



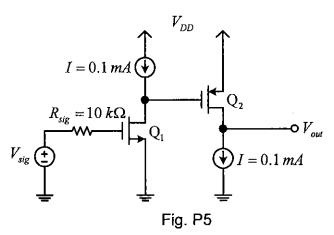
注:背面有試題

所別:電機工程學系碩士班 固態組(一般生) 科目:電子學 共\_多\_頁 第\_多\_頁

電機工程學系碩士班 電波組(一般生)

電機工程學系碩士班 系統與生醫組(一般生)

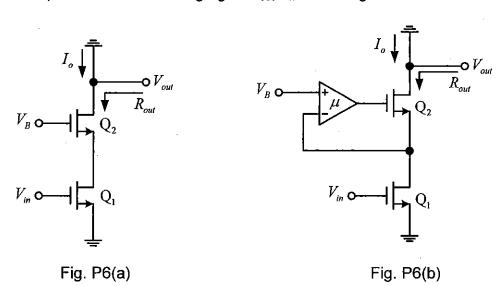
本科考試禁用計算器


\*請在答案卷(卡)內作答

### 5. 計算題(16分)

Figure P5 shows an amplifier by cascading an NMOS and a PMOS common-source stages. Each of  $Q_1$  and  $Q_2$  is operated at an overdrive voltage of 0.2 V, and  $|V_A| = 10$  V. The transistor capacitances are as follows:  $C_{gs} = 20$  fF,  $C_{gd} = 5$  fF and  $C_{db} = 5$  fF.  $R_{sig} = 10$  k $\Omega$ .

5-1 (8 分) Find the dc voltage gain.


5-2 (8 分) The dominant pole is determined at the inter-stage capacitance. Please use the Miller approximation to find the input capacitance of Q<sub>2</sub> and hence determine the total capacitance at the drain of Q<sub>1</sub>. Then calculate the frequency of the dominant pole.



# 6. 計算題(18分)

Fig. P6(a) shows a traditional CMOS cascode amplifier, where  $V_B$  is a dc bias voltage. All transistors have the same transconductance of  $g_m$ , and output resistance of  $r_O$ . The amplifier improves the achievable gain by employing an auxiliary amplifier with a voltage gain  $\mu$  as shown in Fig. P6(b). This modified amplifier is called a super common gate or regulated cascode amplifier.

- 6-1 (6  $\hat{g}$ ) Find an expression for the overall transconductance  $G_m$  of the regulated cascode amplifier in terms of  $g_m$ ,  $r_0$  and  $\mu$ .
- 6-2 (6  $\Re$ ) Find an expression for the output resistance  $R_{out}$  of the regulated cascode amplifier in terms of  $g_m$ ,  $r_0$  and  $\mu$ .
- 6-3 (6 %) Find an expression for the voltage gain  $v_{out}/v_{in}$  of the regulated cascode amplifier.

