國立中央大學103學年度碩士班考試入學試題卷

所別:<u>電機工程學系碩士班 系統與生醫組(一般生)</u> 科目:控制系統 共 頁 第 頁 本科考試禁用計算器 *請在試卷答案卷(卡)內作答

1. A system is given by

$$A = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 \end{bmatrix},$$

and assume that you are using feedback of the form u=-Kx+r, where r is a reference input signal.

- (a) Show that (A, C) is observable. (10)
- (b) Show that there exists a K such that (A-BK, C) is unobservable. (10)
- 2. A system shown in Fig. 1:
 - (a) Find the transfer function from U to Y. (10)
 - (b) Write the state equation for the system using the state-variables indicated. (10)

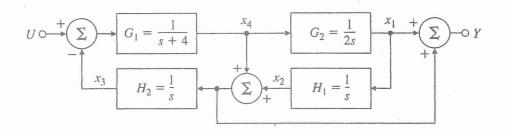


Fig. 1

- 3. What is the main advantage in control design of counting the encirclements of -1/K of D(j ω)G(j ω) rather than encirclements of -1 of KD(j ω)G(j ω)? (20)
- 4. For the system shown in Fig. 2, find the value of the gain K that results in dominant closed-loop poles with a damping ratio $\xi = 0.6$. (20)

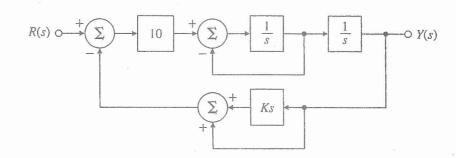
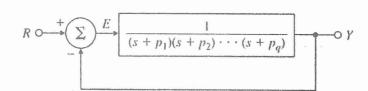



Fig. 2

- 5. A system given in Fig. 3.
 - (a) Find the transfer function from the reference input to the tracking error. (10)
 - (b) For inputs of the form $r(t)=t^n$ 1(t) (where n < q) with zero steady state error, what constraint is placed on the open —

loop poles $p_1, p_2, ..., p_a$? (10)

