國立中央大學100學年度碩士班考試入學試題卷

- 1. The lattice constant of a simple cubic cell is a. (a) (5%) Calculate the distance between the nearest parallel (110) planes. (b) (5%) Calculate the surface density of atoms on the plane (110).
- 2. (10%) Calculate the electron diffusion current density. Assume that the electron mobility is 1000 cm²/V-s at kT/q = 0.026 V, $q = 1.6 \times 10^{-19}$ C, and $\frac{dn}{dx} = 1 \times 10^{21}$ cm⁻⁴.
- 3. (10%) In a pn junction, N_a is the p-type doping density, N_d is the n-type doping density. The electric potential $\phi(-x_p)=0$, and $\phi(x_n)=V_{bi}$, x_p is the p-type depletion width, and x_n is the n-type depletion width. Both x_p and x_n are positive. V_{bi} is the built-in potential. If $\phi(x)=a(x-x_n)^2+V_{bi}$ for $0\leq x\leq x_n$, find a in terms of N_d .
- 4. (10%) The total forward-bias current in a pn diode is the sum of the recombination and the ideal diffusion current densities as $J=J_{rec}+J_D$. $J_D=J_s(\exp(\frac{V_a}{V_t})-1)$. $J_{rec}=J_{r0}(\exp(\frac{V_a}{2V_t})-1)$. $J_{r0}>J_s$. Sketch $\ln(J)$ versus $\frac{V_a}{V_t}$ for $V_a>0$. Show the $\ln(J_{r0})$, $\ln(J_s)$ on your plot.
- 5. Consider a Schottky barrier diode with n-type silicon doped to N_d . (a) (5%) Find the theoretical barrier height ϕ_{B0} in terms of the metal work function ϕ_m and the silicon electron affinity χ . (b) (5%) Find the built-in potential barrier V_{bi} in terms of the effective density of states in the conduction band N_c .
- 6. Consider an npn transistor with a base region from x=0 to x_B . The excess electron concentration $\Delta n_B(x)=\Delta n_B(0)=\Delta n_{B1}$ at x=0. $\Delta n_B(x)=\Delta n_B(x_B)=\Delta n_{B2}$ at $x=x_B$. $\Delta n_{B1}>0$ and $\Delta n_{B2}<0$ (a) (5%) Plot $\Delta n_B(x)$ versus x if $x_B>>L_B$, where L_B is the electron diffusion length in the base region. (b) (5%) If $\Delta n_B(x)=m_1\cdot\Delta n_{B1}+m_2\cdot\Delta n_{B2}$ for $x_B<< L_B$, find m_1 and m_2 in terms of x and x_B .
- 7. (a) (5%) Sketch the basic Ebers-Moll equivalent circuit for an npn bipolar transistor with the following parameters: α_F , α_R , I_{ES} , I_{CS} , V_{BE} , and V_{BC} . (b) (5%) The Ebers-Moll model has four parameters: α_F , α_R , I_{ES} , and I_{CS} . According the reciprocity relationship, the four parameters can be reduced to three independent parameters: α_F , α_R , and I_S . Find I_S in terms of α_F and I_{ES} .
- 8. (10%) Using superposition, the shift in the flat-band voltage due to a fixed constant charge distribution $\rho(x) = \rho_1$ in the oxide region can be given by $\Delta V_{FB} = a\rho_1 t_{ox}^2$. Find the expression of a in terms of ϵ_{ox} , where ϵ_{ox} is the permittivity of the oxide, and t_{ox} is the oxide thickness.
- 9. (a) (5%) Sketch the C-V characteristics of an MOS capacitor with a p-type substrate under the low-frequency condition and the high-frequency condition in a same plot. (b) (5%) Sketch the differential charge distributions under the low-frequency condition and the high-frequency condition respectively.
- 10. (10%) $I_D = \frac{W\mu_n C_{ox}}{2L}[2(V_{GS} V_T)V_{DS} V_{DS}^2]$ for an n-channel MOSFET in the nonsaturation region. Describe how to determine the inversion carrier mobility μ_n and the threshold voltage V_T from the I-V experimental results. For a fixed V_{DS} , $I_D = I_{D1}$ if $V_{GS} = V_{GS1}$, and $I_D = I_{D2}$ if $V_{GS} = V_{GS2}$.