科目:<u>控制系統(500D)</u>

校系所組:中央大學電機工程學系(系統與生醫組)

交通大學電控工程研究所(甲組、丙組) 清華大學電機工程學系(甲組、丁組)

- 1. (25%) Suppose a physical system under input r(t) can be modeled by the differential equation $\ddot{x}(t) + 2\ddot{x}(t) + 4\dot{x}(t) + Kx(t) = r(t)$ with zero initial conditions.
- (a) the conditions on K such that the solutions of this physical system will be 0 asymptotically under bounded input, (12%)
- (b) the value of K such that the steady state will have a pure oscillatory solution for unit step input. (13%)

2. (a) (12%) Please draw the root locus for the systems I and II as shown. You must explain how the root locus is constructed. Also, which system do you think has a smaller overshoot in its unit step response when K = 5? Please explain.

(b) (13%) Please draw the root locus for the system as shown below. You must explain how the root locus is constructed.

科目:<u>控制系統(500D)</u>

校系所組:中央大學電機工程學系(系統與生醫組)

交通大學電控工程研究所(甲組、丙組)

清華大學電機工程學系(甲組、丁組)

3. (25%) Consider the following system:

$$\frac{dx}{dt} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ -2 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} x$$

- (1) Prove and determine that this system is controllable or uncontrollable. (12%)
- (2) The state feedback control u=r+kx, $k=\begin{bmatrix}k_1&k_2&k_3&k_4\end{bmatrix}$ will be designed to let controlled system closed-loop poles be placed at -1, -2, -1±j, find k_1 , k_2 , k_3 and k_4 . (13%)

4. (25%) For the given control system:

- (i) Neglecting the feedforward controller G_{fc} and the disturbance F_L , derive the closed-loop tracking transfer function $H_{dx}(s) \triangleq x(s)/x^{*}(s)$, and find the stability ranges of the controller parameters K_x and K_v . (6%)
- (2) Find K_x and K_y to let the controlled closed-loop transfer function $H_{dx}(s)$ possess damping ratio $\varsigma = 1.25$ and natural frequency $\omega_n = 10$. (8%)
- (3) Find: (a) the value of output x(t) at t=0.2s, x(t=0.2) and the steady-state value $x(t=\infty)$ due to unit-step command input of x^* ; (b) the steady-state value $x(t=\infty)$ due to unit-step disturbance input of F_L ; (c) the steady-state value $x(t=\infty)$ due to unit-ramp command input of x^* . (6%)
- (4) Applying the feedforward controller G_{fc} and neglecting the disturbance F_L , derive the transfer function $H_{dv}(s) \stackrel{\triangle}{=} v(s)/v^*(s)$ and then find G_{fc} to yield the ideal position tracking control, i.e., $H_{dx}(s) \stackrel{\triangle}{=} x(s)/x^*(s)$. (5%)

