科目: 訊號與系統(500B)

校系所組:中央大學電機工程學系(系統與生醫組) 清華大學電機工程學系(乙組、丁組)

—. Consider a discrete-time, causal LTI system with input x[n] and output y[n]. The system is described by the following pairs of difference equations, involving an intermediate signal w[n]:

$$y[n] - \frac{5}{4}y[n-1] + w[n] + \frac{1}{4}w[n-1] = \frac{1}{10}x[n]$$
$$y[n] - \frac{3}{2}y[n-1] + 2w[n] = -\frac{2}{5}x[n]$$

- (-) (3%)Derive the frequency response of this system.
- (二) (3%)Derive the impulse response of this system.
- (Ξ) (4%)Find a single difference equation relating x[n] and y[n].
- 二. Given the following second-order causal, stable LTI system

$$7\frac{d^2y(t)}{dt^2} + 28\frac{dy(t)}{dt} + 28y(t) - x(t) - 4\frac{dx(t)}{dt} = 0$$

- (—)(3%) Find the frequency response of this system.
- (二)(4%) Find the corresponding impulse response.
- (三)(3%) Determine whether this system is over-damped, critically damped, or under-damped.
- \equiv . (20%) Consider a continuous-time low-pass filter h(t) with its Fourier spectrum $H(i\omega)$, whose magnitude spectrum and phase spectrum are shown in Fig. 1. Please determine h(t) by means of inverse Fourier Transform.

Figure 1.

- 四. ()(10%) Consider a continuous-time linear time-invariant system with impulse response $h(t) = e^{-t}u(t)$. Determine the output y(t) of the system when the input is x(t) = u(t+1) u(t-1).
 - ($\underline{\hspace{0.1cm}}$)(10%) Consider a discrete-time linear time-invariant system with unit sample response $h[n] = r^{n}u[n]$, where 0 < r < 1. Determine the step response s[n] of this system.

科目: 訊號與系統(500B)

校系所組:中央大學電機工程學系(系統與生醫組)

清華大學電機工程學系 (乙組、丁組)

五. Please determine the z-transform or the inverse z-transform of the following signals.

(-)(10%) Please find the z-transform of the signal x[n],

$$x[n] = \left(\frac{1}{2}\right)^n u[n] * \left(n\left(\frac{-1}{4}\right)^n u[n]\right) ,$$

where u[n] is discrete-time unit-step function, and * denotes the discrete-time convolution operator.

(=)(10%) Please find the inverse z-transform of X(z),

$$X(z) = \left(\frac{1}{1 - az^{-1}}\right)^2$$

六. Given a linear time-invariant (LTI) system with system function

 $H(s) = \frac{s-1}{(s+1)(s-2)}$, please determine the impulse response h(t) and show

its corresponding region of convergence (ROC) if

(--)(10%) the system is known to be causal;

(二)(10%) the system is known to be stable.