科目: 工程數學 C(5005)

校系所組:中央大學電機工程學系(電子組、系統與生醫組)

交通大學電子研究所(甲組、乙組)

交通大學電控工程研究所(甲組、丙組)

交通大學電信工程研究所(乙組)

清華大學電機工程學系(甲組)

<u>清華大學光電工程研究所</u>

<u>清華大學電子工程研究所</u>

清華大學工程與系統科學系(丁組)

一. (5%)

- (-) (2%) Solve $y' = y^2$, y(0) = 2. Call the solution y_c .
- (=) (2%) Solve $y' = y^2 1$, y(0) = 1. Call the solution y_p .
- (Ξ) (1%) Does $y_c + y_p$ solve $y' = y^2 1$, y(0) = 3? Explain.
- =. (8%) One solution of the equation y'' + p(t)y' + q(t)y = 0 is $(1+t)^2$, and the Wronskian of any two solutions is constant. Find the general solution of y'' + p(t)y' + q(t)y = 1 + t.
- \equiv . (5%) Three solutions of a 2nd-order linear equation L(y) = g(t) are

$$\psi_1 = 2e^{t^2} + e^t, \psi_2 = te^{t^2} + e^t \text{ and } \psi_3 = (1+t)e^{t^2} + e^t.$$

Find the solution of the initial problem L(y) = g(t); y(0) = 3, y'(0) = 0.

四. (8%) Let y be a real function of x. Find two linearly independent Frobenius solutions of the following differential equation at x = 0:

$$2x^2y''+x(x-3)y'+3y=0$$

 \pm . (8%) Let x_1 and x_2 be two real functions of t. Solve x_1 and x_2 for the following system of differential equations

$$\begin{cases} x_1' = 4x_1 - x_2 \\ x_2' = x_1 + 2x_2 \end{cases}, x_1(1) = 5, x_2(1) = 3$$

- \dot{x} . (7%) Given the initial value problem, x'' + 4x' + 13x = f(t); x(0) = x'(0) = 0
- (-) (3%) Express x(t) in terms of f(t) and convolution.
- (=) (4%) Solve x(t) for f(t) = u(t) u(t-1), where u(t) denotes the unit step (or Heaviside Step) function.

 $+ . (9\%) \quad f(t) = \begin{cases} 1, & 0 < t < 5 \\ 0, & 5 < t < 10 \end{cases}$ with f(t+10) = f(t) is a piecewise continuous and periodic function that

satisfies $f(t) = \frac{|f(t^+) + f(t^-)|}{2}$, where $f(t^+)$ and $f(t^-)$ are the right-hand and left-hand limits of f(t) at each discontinuity.

- (-) (3%) Find the Fourier series of f(t).
- (=) (3%) Let f(t) be defined for $t \ge 0$; find its Laplace transform F(s) for s > 0.
- (Ξ) (3%) Find a particular solution for x'' + 16x = f(t).

 \wedge . (9%) Consider the following partial differential equation: $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$

For the moment let's assume that u is in the form of $u = A \sin \lambda x \cos \omega t$, where A, λ , and ω are non-zero constants.

- (-) (3%) What is the relationship between λ and ω ?
- (\perp) (3%) Assuming that u must satisfy the condition u(x=0,t)=u(x=8,t)=0, what is λ ? Notice that λ might not be single valued.
- (\equiv) (3%) What is the lowest possible frequency of u?

九. (4%) Given the equation for the circular membrane vibration: $\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right)$

with the boundary condition: u(r=20,t)=0 and c is a constant, the solution is in the form of

$$u = \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} W_n T_n = \sum_{n=1}^{\infty} (A_n \cos ck_n t + B_n \sin ck_n t) J_0(k_n r)$$

where J_0 is the Bessel function of the first kind. Find the nodal line (curves on the membrane that do not move) for n = 2. Note that J_0 has infinitely many positive zeros α_1 , α_2 , α_3 ... as shown in the following figure.

注 意·背面有試題 +. (12%) Consider a bulk of silicon with dimension $l \times w \times d$, where the thickness d (along the z-axis) is much smaller than the length l and width w. The diffusion and annealing of dopant ions is governed by the diffusion equation:

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial z^2}, \ (t > 0, \ 0 < z < d)$$

where u(z,t) means the dopant ion density and α^2 represents the diffusivity.

(-)(6%) Let the dopant ion density profile somewhere inside the silicon at a certain instant t_0 , i.e. $u(z,t_0)$, look like as shown in the figure. Without detailed calculation, please roughly draw the new dopant ion density profile corresponding to a very short time Δt later, i.e. $u(z,t_0+\Delta t)$.

(=)(3%) Write down the boundary conditions if all the dopant ions cannot escape from the bulk of silicon.

 (\equiv) (3%) Without detailed calculation, can you draw the steady-state dopant ion density profile $u(z,t\to\infty)$ by using $u(z,t_0)$ as shown and the boundary conditions specified in part (\equiv) ?

+-. (13%) For a 3x3 matrix A, where

$$A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$$

(-) (6%) Please find its eigenvalues and corresponding eigenvectors.

(=) (7%) Assume the 3 eigenvalues are in the order of $\lambda_1 \le \lambda_2 \le \lambda_3$. Starting from the eigenvector corresponding to λ_1 , please find the corresponding orthonormal basis.

+=. (12%) Define the space P_n as the set of all polynomials of degree less than n. Let L be the operator on P_3 and

$$L(p(x)) = \alpha + x \frac{d}{dx} p(x) + \frac{d^2}{dx^2} p(x)$$

(-) (3%) Find the matrix A representing L with respect to [1, x, x^2].

(=) (3%) Find the matrix **B** representing L with respect to $[1, x, 1+x^2]$.

(=) (3%) Find the condition of α such that **A** and **B** are similar matrices.

(23) If $p(x) = a_0 + a_1x + a_2x^2$, calculate $L^n(p(x))$ given the condition of α in (Ξ) .