國立中央大學102學年度碩士班考試入學試題卷

所別:<u>數學系碩士班 乙組(一般生)</u> 科目:<u>數值分析 共 乙 頁 第 </u> 頁 本科考試禁用計算器

*請在試卷答案卷(卡)內作答

參考用

Instructions: Do all 4 problems. Show your work.

1. (Computer arithmetics)

Use the following example

$$f(x) = \sqrt{x^2 + 1} - 1,$$

whose value needs to be evaluated for x near zero, to explain what the loss of significance means and propose a way to avoid it in substraction. (10 pts)

2. (Numerical linear algebra)

Consider the matrix A given by

$$\left(\begin{array}{cccc}
0 & 2 & -1 \\
-2 & -10 & 0 \\
-1 & -1 & 4
\end{array}\right)$$

- (a) Find the LU decomposition of PA, where P is a permutation matrix. (10 pts)
- (b) Use Gershgorin's Theorem to locate the eigenvalues of A. (5 pts)
- (c) Give a bound for the spectral radius, $\rho(A)$. (5 pts)
- (d) Design an algorithm based on the Power method for finding the second largest eigenvalue in magnitude. (10 pts)

3. (Interpolation)

Consider the table

- (a) Find the Lagrange form of the interpolation polynomial of degree 3 passing the points given in the above table. (10 pts)
- (b) Redo part (a) by using the Newton form of the interpolation polynomial. (10 pts)

所別:<u>數學系碩士班 乙組(一般生)</u> 科目:<u>數值分析 共 2 頁 第 2 頁</u>

*請在試卷答案卷(卡)內作签

4. (Numerical Differential Equations)

(a) Use Taylor's theorem to derive the first-order backward difference approximation for the first derivative of u(x) at x=t and the second-order central difference approximation for the second derivative of u(x) at x=t, including the error term, for h>0:

$$u'(t) = \frac{u(t) - u(t - h)}{h} + \frac{h}{2}u''(\xi), \tag{1}$$

where $\xi \in (t - h, t)$. and

$$u''(t) = \frac{u(t+h) - 2u(t) + u(t-h)}{h^2} - \frac{h^2}{12}u^{(4)}(\xi), \tag{2}$$

where $\xi \in (t - h, t + h)$. Be sure to write any assumption you made for the function f(x). (10 pts)

(b) Discretize the following two-point boundary value problem:

$$\begin{cases} -u'' + \sinh(u) = 0 \text{ in } (0, 1) \\ u(0) = 1 \qquad u'(1) = 0 \end{cases}$$

using Formulas (1) and (2) with the grid size h=1/4 to obtain the nonlinear system of equations in the form of

$$\begin{cases} f_1(u_1, u_2, u_3) = 0 \\ f_2(u_1, u_2, u_3) = 0 \\ f_3(u_1, u_2, u_3) = 0 \end{cases}$$

excluding two boundary points, x_0 and x_4 . Here, u_i are the approximate values of u(x) at interior points x_i for i = 1, 2, 3. Note that $\sinh x = \frac{e^x - e^{-x}}{2}$. (10 pts)

(c) Solve the resulting nonlinear system of equations by Newton's method. Perform one Newton iteration starting with $(u_1, u_2, u_3)^T = (0, 0, 0)$. (10 pts) Show that the corresponding Jacobian matrix is always symmetric positive definite. (10 pts)