國立中央大學101學年度碩士班考試入學試題卷

所別:<u>數學系碩士班 甲組(一般生)</u> 科目:<u>高等微積分</u> 共<u></u>頁 第<u>/</u>頁 數學系碩士班 甲組(在職生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

- 1. Determine (by proof or counterexample) the truth or falsity of the following statements :
 - (a) If $\{x_n\}$ and $\{y_n\}$ are bounded sequences of real numbers, then $(\liminf x_n)(\liminf y_n) \leq \liminf (x_ny_n)$. (10%)
 - (b) Let (M,d) be a metric space. For each fixed $x \in M$ and $\varepsilon > 0$, the set $\{y \in M : d(x,y) < \varepsilon\}$ is open. (10%)
 - (c) Let (M,d) be a metric space and let $\{x_n\}_{n=1}^{\infty} \subseteq M$ converge to $x \in M$. Then $A = \{x_1, x_2, \dots\} \cup \{x\}$ is compact. (10%)
 - (d) Every continuous real-valued function on [0,2] is Riemann integrable. (10%)
 - (e) The function $f(x) = x^2$ is uniformly continuous on $[0, \infty)$. (10%)
 - (f) Let $\{f_k\}_{k=1}^{\infty}$ be the sequence of functions on [0, 1] defined by

$$f_k(x) = \begin{cases} 4k^2x & \text{if } 0 \le x < \frac{1}{2k} \\ 4k - 4k^2x & \text{if } \frac{1}{2k} \le x < \frac{1}{k} \\ 0 & \text{if } \frac{1}{k} \le x \le 1. \end{cases}$$

Then $\{f_k\}$ converges uniformly on [0,1]. (10%)

- 2. Let (M,d) be a compact metric space and $\phi: M \mapsto M$ satisfy $d(\phi(x),\phi(y)) < d(x,y)$ for all $x,y \in M, x \neq y$. Show that ϕ has a unique point $\xi \in M$ such that $\phi(\xi) = \xi$. (20%)
- 3. Let $\mathbb R$ be the real number system and $\mathbb R^2=\mathbb R\times\mathbb R$. Suppose $f:\mathbb R^2\mapsto\mathbb R$ is defined by

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Investigate the differentiability of f at (0,0). (20%)