國立中央大學100學年度碩士班考試入學試題卷

所別:<u>數學系碩士班 甲組(一般生)</u> 科目:<u>高等微積分</u> 共<u>/</u>頁 第<u>/</u>頁 數學系碩士班 甲組(在職生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

Let $\mathbb N$ be the natural numbers and $\mathbb R$ be the real numbers.

- 1. Prove or disprove the following statements:
 - (1) Let (M,d) be a metric space. Then the union of an arbitrary family of closed subsets is closed. (10%)
 - (2) Let (M,d) be a metric space. Then every bounded and closed set is compact. (10%)
 - (3) Let $\{p_n\}_{n\in\mathbb{N}}$ be a uniformly convergent sequence of polyniomials on [0,2] and $f=\lim_{n\to\infty}p_n$. Then f is differentiable. (10%)
 - (4) Suppose that $f:[0,1] \to \mathbb{R}$. Then f is Riemann integrable if and only if |f| Riemann integrable. (10%)
- 2. If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function and f(f(x)) = x for all $x \in \mathbb{R}$. Show that there exists a $\xi \in \mathbb{R}$ such that $f(\xi) = \xi$. (12%)
- 3. Let $f(x) = \sqrt{x}$ on $[0, \infty)$. Prove or disprove f is uniformly continuous. (12%)
- 4. Test the following series for convergence. (a) $\sum_{n=0}^{\infty} \frac{\sqrt{n+3}}{n^2-3n+1}$ (6%); (b) $\sum_{k=1}^{\infty} \frac{\ln(k+2)-\ln k}{\tan^{-1}(2/k)}$. (6%)
- 5. Suppose that $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Show that $f(x)=\sum_{n=1}^{\infty}\frac{a_n}{n!}x^n$ is a continuous function on \mathbb{R} . (12%)
- 6. Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Prove that L is continuous and differentiable on \mathbb{R}^n by definition. (12%)

